
123© Pario Communications Limited, 2009 Digital Evidence and Electronic Signature Law Review, Vol 6

Introduction
The risks associated with the internet have changed
significantly. A recent study claims that a typical
Microsoft Windows machine is subjected to
autonomous infiltration attempts – not just mere pings
and probes – from worms and botnets looking for
clients once every six minutes.1 Stealth – not
exhibitionism or hubris – characterizes this breed of
attacks and concomitantly deployed malicious software.
Unbeknownst even to experienced human operators,
surreptitious attacks are able to insert malicious code
deep within the bowels of individual computers and the
wider supporting internet communication and control
infrastructure such as wireless access points, home
routers, and domain name servers.2 In addition to
stealth, social engineering via e-mail, Instant
Messaging, and social networks plays an important
part, as well: unsuspecting users are coaxed to initiate
actions that infect their computers and usurp their
digital identities.

These attacks are powerful because of the havoc that
is causes to the owner or user of the computer or
computer network. The effects range from mere
nuisance, to the appropriation of sufficient information

to impersonate an individual, that can, in turn, lead to
financial ruin, up to and including criminal charges
against the innocent.3 They are also powerful because,
in many instances, neither individual computer owners,
nor the sophisticated network controlled by a
government can prevent all of the malicious code from
penetrating their computers or networks.

In the past, the actions of hobbyists and isolated
mischief makers merely caused disruptions. Now
organized and highly technically competent criminals
with financial incentives as the primary motivator have
taken over. In addition, semi-independent state-
sponsored groups occasionally launch attacks on
another state. The ramifications of this shift are
worrisome: that a person may subscribe to an anti-virus
software product from one of the many vendors on the
market does not mean that their computer is protected
from or necessarily free of malicious software.

Modern malicious software has been shown in tests
carried out in independent laboratories to be highly
resistant to being identified by anti-virus (AV) products.
In addition, these empirical results are consistent with
theoretical findings, in that detecting complex malicious
software is beyond the effective modelling capabilities
of current AV products,4 and as such is becoming

1 Gabor Szappanos, ‘A Day in the Life of An Average
User’, Virus Bulletin, January 2009, 10-13, available
at http://www.virusbtn.com/.

2 Most users do not bother to change the default
passwords on home devices such as routers.
Browser vulnerabilities can then be exploited by
malicious software to alter the DNS settings of the
router, thereby directing any name lookup query to
a DNS of the attacker’s choice. This may be used
to spoof a bank web site, for instance. See Sid
Stamm, Zulfikar Ramzan and Markus Jakobsson,
‘Drive-By Pharming’, Lecture Notes in Computer

Science 4861, (Springer, 2007), 495-506 and Hristo
Bojinov, Elie Bursztein, Eric Lovett and Dan Boneh,
‘Embedded Management Interfaces: Emerging
Massive Insecurity’, Blackhat Technical Briefing,
Blackhat USA 2009 (Las Vegas, USA, August 2009),
available at http://www.blackhat.com/
presentations/bh-usa-09/BOJINOV/BHUSA09-
Bojinov-EmbeddedMgmt-PAPER.pdf.

3 For examples of people charged with offences, see
Patrick v Union State Bank, 681 So.2d 1364 (Ala.
1995); Vic Lee, ‘ID Theft Puts Innocent Man In San
Quentin’, 21 February 2007, ABC7News, available

at http://abclocal.go.com/kgo/story?section=
news/local&id=5052986 and Mary Pat Gallagher,
‘Identity-Theft Victims Owed Duty of Care in Bank
Fraud Investigations, N.J. Court Says’, Law.com, 11
September 2008, available at http://www.law.com/
jsp/article.jsp?id=1202424426977.

4 Yingbo Song, Michael E. Locasto, Angelos Stavrou,
Angelos D. Keromytis and Salvatore J. Stolfo, ‘On
the infeasibility of modelling polymorphic
shellcode,’ Proceedings of the 14th ACM
conference on Computer and Communications
Security, 2007, 541–551.

By Daniel Bilar

KNOWN KNOWNS,
KNOWN UNKNOWNS
AND UNKNOWN
UNKNOWNS:
ANTI-VIRUS ISSUES,
MALICIOUS SOFTWARE
AND INTERNET ATTACKS
FOR NON-TECHNICAL
AUDIENCES

ARTICLE:

124 Digital Evidence and Electronic Signature Law Review, Vol 6 © Pario Communications Limited, 2009

KNOWN KNOWNS, KNOWN UNKNOWNS AND UNKNOWN UNKNOWNS:
ANTI-VIRUS ISSUES, MALICIOUS SOFTWARE AND INTERNET ATTACKS FOR NON-TECHNICAL AUDIENCES

increasingly difficult to detect in practice, and
worryingly, also in principle.5 To put it simply, anti-virus
software does not prevent all forms of malicious
software from penetrating computers and networks –
some malicious software will not be identified by anti-
virus software, which is why this is an important topic
for lawyers and judges to understand.

The aim of this article is to introduce the technical
issues surrounding modern internet attacks, anti-viral
software and malicious software to the individual that
has no technical knowledge, and who needs a working
understanding of the pertinent issues. As such, its
primary goal is to raise awareness, not
comprehensiveness. The interested reader is referred to
a recent book by Markus Jakobsson and Zulfikar
Ramzan, Crimeware. Understanding New Attacks And
Defenses, (Symantec Press, 2008) for further study.

Software vulnerabilities
Coding errors6 in software can lead to vulnerabilities.
Software vulnerabilities are program weaknesses which
malicious software can exploit. The relationship
between coding errors, vulnerabilities and exploitation
is illustrated by the following analogy: the US Tariff Act
of 1872 was to include a list of duty-free items: Fruit
plants, tropical and semi-tropical. A government clerk
duly transcribed the Act, but erroneously moved the
comma: Fruit, plants tropical and semi-tropical. Shrewd
businessmen argued that the law, as promulgated,
exempted all tropical and semitropical plants from duty
fees, resulting in $500,000 loss to the US Treasury.7 For
the purposes of this discussion, the erroneous
placement of the comma is the equivalent of a software
coding error. The vulnerability resulting from this error
manifests itself as an opportunity for alternative
interpretation, and the exploit is represented by cleverly
taking advantage of duty-free imports of tropical and
semi-tropical plants.

Since errors in software coding errors permit
malicious exploitation, it seems obvious that efforts
should concentrate on writing error-free code.

Unfortunately, industrial software has exhibited the
same code error density for the past twenty years; on
average six faults (errors) for every thousand lines of
source code.8 However, the general increases in the
amount of code (Windows Vista has an estimated 80
million lines, whereas Windows 2000 had 35 million
lines), as well as the complexities of modern software
(interactions between components and protocols, as
well as very large applications like Adobe Acrobat
Reader with 2 million lines of code) have exacerbated
the situation.

The survival time of an unpatched Windows system
may serve as corroborating evidence.9 In 2003, an
unpatched Windows PC would last approximately 40
minutes on average, before it would succumb to probes
from (presumably) malicious software. In 2004, survival
time was reduced to 16 minutes and by 2008, the time
window had shrunk to mere 4 minutes.10

Just as a motor car needs regular tune-ups to keep
running smoothly, maintenance of installed software is
performed through regular updates. Since software
vulnerabilities are the root cause of many malicious
software infections, updating (or equivalently patching)
minimizes the number and severity of software
vulnerabilities that malicious software may exploit. The
poor quality of software code explains in part why anti-
virus software is required in the first place (another
factor is ubiquitous connectivity). Anti-virus software,
however, has problems of its own.

The problem with anti-virus software
Most commercial AV products rely predominantly on
some form of signature matching to identify malicious
code. In the context of AV, a signature is the rough
software equivalent of a fingerprint – it is a pattern that
identifies malicious software. It is possible to derive a
pattern from software code, that is, a static snippet of
code (or a uniquely reduced version of it, such as a
hash). The fragment is taken as the pattern that
identifies the code. A static signature is, in its simplest
incarnation, a fixed sequence of characters somewhere

5 Grégoire Jacob and Eric Filiol and Hervé Debar,
‘Malware as interaction machines: a new
framework for behavior modelling,’ Journal in
Computer Virology, Volume 4, Number 3, August
2008, 235-250.

6 For an overview of such errors, see Katrina
Tsipenyuk, Brian Chess and Gary McGraw, ‘Seven
Pernicious Kingdoms: A Taxonomy of Software
Security Errors’, IEEE Security and Privacy, Volume
3, Issue 6, (November 2005), 81-84.

7 See ‘Forty-Third Congress; First Session Feb. 20’,

New York Times, February 21, 1874, at
http://query.nytimes.com/mem/archive-
free/pdf?res=9902EFD8173BEF34BC4951DFB4668
38F669FDE.

8 Compare John Musa, Software Reliability
Measurement Prediction Application (McGraw-Hill,
1987) with Parastoo Mohagheghi and Rediar
Conradi, ‘An empirical investigation of software
reuse benefits in a large telecom product’, ACM
Transactions on Software Engineering
Methodology, Volume 17, Issue 3 (June 2008), 1-31.

9 A patched system denotes a computer on which
the latest software updates (normally for the
Operating System, but also for Office suites and
media software) have been installed.

10 See John Leyden, ‘Unpatched Windows PCs own3d
in less than four minutes’, The Register, 15 July
2008 at http://www.theregister.co.uk/2008/
07/15/unpatched_pc_survival_drops/ and Survival
Time at http://isc.sans.org/survivaltime.html.

125© Pario Communications Limited, 2009 Digital Evidence and Electronic Signature Law Review, Vol 6

KNOWN KNOWNS, KNOWN UNKNOWNS AND UNKNOWN UNKNOWNS:
ANTI-VIRUS ISSUES, MALICIOUS SOFTWARE AND INTERNET ATTACKS FOR NON-TECHNICAL AUDIENCES

in a file or in memory and may look something like this:

C3 7C FD 1D 31 C0 6F OF 96 18 A4

The rationale underlying these character patterns is that
they are more likely to be encountered when analyzing
malicious software rather than innocent programs.
Hundreds of thousands of these signatures are stored in
local AV databases (AV signature updates are received,
hopefully, at least once a week). An AV scanning engine
then tries to match pre-defined file areas against this
signature database. These areas are typically located at
the beginning and the end of the file, and after what is
called the executable entry point of a program.

Strict matching of the byte sequence pattern was
most popular in the early 1990s. This method has since
been augmented, because those responsible for writing
malicious code took action to avoid being noticed by the
AV products. They approached their evasion in a
straightforward way. Because of time constraints (users
tend not to wait more than a couple of seconds), it is
not usual to scan the whole file. Malicious authors took
advantage of this fact and moved the malicious code to
locations in the file that would probably not be scanned.
Furthermore, they tweaked their malicious code to
make the byte pattern mismatch. One way of doing this
is by equivalent instruction substitution. An example
will illustrate this point. In the signature above, the
substring pattern 31 C0 represents Intel machine code
xor ax, ax. Its purpose is to set register ax to 0. A
substitution that preserves this functionality would
replace the substring with 29 C0 (which is machine
code for sub ax, ax) or B8 C0 00 (which is machine
code for mov ax,0).

Generic matching was introduced to add some
‘fuzziness’ to the signature in order to catch malicious
software that is slightly altered so as to evade the
stricter matching. Using the example above, the second,
third, fourth and ninth bytes are replaced with a
wildcard (a ‘blank’, do-not-care byte) denoted by ‘??’:

C3 ?? ?? ?? 31 C0 6F OF ?? 18 A4

When searching for this pattern, the ‘??’ directs the AV
scanner to ignore whatever byte value is present in the
second, third, fourth and ninth bytes of character strings
it encounters while scanning the file. For example the
string below:

C3 99 A0 BB 31 C0 6F OF 77 18 A4

would match, as well as:

C3 A1 22 00 31 C0 6F OF FF 18 A4

Hence, wildcards try to lower AV false negative
detection rates by ‘softening’ the signatures to
counteract some of the evasive coding tactics that
malicious software is programmed to use to avoid
detection. The problem with casting a wider net to catch
‘bad’ programs is that ‘innocent’ (that is non-malicious)
programs may be identified incorrectly; in other words,
there is an increase in the false positive rate.

For an accessible overview of more AV signature
detection enhancements, the reader is encouraged to
peruse chapter 11 of Peter Szor, The Art of Computer
Virus Research and Defense, (Addison Wesley, 2005).

Static signatures, as we have discussed them so far,
are derived from program code, reflecting the byte value
make-up of a program. Malicious software detection at
the beginning of the twenty-first century started to
incorporate behavioural heuristics approaches; that is, a
notion of how a given software program interacts with
its embedded environment. For instance, a program may
interact with a file system (by opening, creating or
deleting a file), or the network (opening a connection to
a server or setting up a receiving server). These and
other interactions of the program can be monitored in
what is called a ‘sandbox’. A sandbox is a controlled,
instrumented container in which the program is run and
that records how it interacts with its environment. A
sample sandbox output is set out below:

[General information]

* Display message box (sample) : sample, tikkun olam!

* File length: 18523 bytes.

* MD5 hash: 1188f67d48c9f11afb8572977ef74c5e.

Here some general information about the file (its length
and its hash) is made visible, together with what is
displayed on screen (a message box with the caption
‘sample’ and message ‘tikkun olam!’). The next phase is
for the malicious software to carry out instructions to
delete a file and place a substitute file in place of the
file that has been deleted:

[Changes to filesystem]

* Deletes file C:WINDOWS\SYSTEM32\kern32.exe.

* Creates file C:WINDOWS\SYSTEM32\kern32.exe.

126 Digital Evidence and Electronic Signature Law Review, Vol 6 © Pario Communications Limited, 2009

Here we see that the first action of the program is to
delete a file and recreate one with the same name,
kern32.exe. This is suspicious. Then it is necessary to
enter the internal Windows database (the Windows
registry). This is illustrated below. This entry makes the
file kern32.exe run when system startup begins as the
computer is switched on:

[Changes to registry]

* Creates key

"HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnce".

* Sets value "kernel32"="C:WINDOWS\SYSTEM32\kern32.exe -

sys" in key " HKLM\Software\ Microsoft\Windows

\CurrentVersion\RunOnce".

This is very suspicious behaviour, in that the system is
instructed to intercept the strokes used on the keyboard
and pass it on to a custom function:

[Changes to system settings]

* Creates WindowsHook monitoring keyboard activity.

There follows the network activity: the program
connects to a server at address 110.156.7.211 on port
6667, a typical port for Internet Relay Chat (IRC) chat
server, logs in and joins a chat channel:

[Network services]

* Connects to “110.156.7.211” on port 6667 (TCP).

* Connects to IRC server.

* IRC: Uses nickname CurrentUser[HBN][05].

* IRC: Uses username BoLOGNA.

* IRC: Joins channel #BaSe_re0T.

In the example above, interactions occur with the file
system, the Windows registry (the internal Windows
database) and the establishment of a TCP network
connection to an IRC chat server. Connecting to a chat
server is anomalous enough behaviour that it should
raise a concern that something is not correct. Taken
together, this set of activities is consistent with the
suspicious program being a bot, connecting to a botnet
through the IRC server.

Thus, behavioural heuristics seek to establish an
‘activity’ profile. It is also possible to derive a
‘behavioural signature’ from such an activity profile (as
opposed to the byte-value approach discussed earlier).11

Just as there are different ways of rewriting instructions
(as seen with the xor ax,ax example above), there
are ways of effecting the same or similar behaviour: a
Windows program may open a file by means of user
mode API NtOpenFile()/OpenFile(), kernel-
mode API ZwOpenFile() or may even bypass the API
completely and directly access the disk driver with
IoCallDriver() with manually constructed IO
packets. How well these signatures approaches work in
practice will be discussed below.

Practical AV concerns: false negatives
A number of independent laboratories regularly test
updated AV scanners against millions of malicious
software specimens. These scanners predominantly use
byte-value signature approaches, though almost all of
them today incorporate some form of (much slower)
behavioural detection. Some empirical data for sixteen
well-known, reputable AV products are shown in Table 1.

Table 1: Miss rates of up-to-date scanners.

Table generated by the author from AV-comparatives.org data

The reader is requested to note how quickly AV
signature databases go out-of-date. After failing to
update signatures for one week, the best AV tested
missed between 26 and 31 per cent of the new
malicious software, the worst missed upwards of 80 per
cent. The empirical test results from http://www.av-
comparatives.org/comparatives reviews indicate that
the claims made by vendors of AV products must be
soberly assessed.

There is preliminary hope pinned on ‘cloud
computing’ environments, where vendors promise
reactive signature generation times on the order of

11 For a review of behavioural based scheme and a
recent prototype of a behaviour based signature
approach (using a system-call-data flow
dependency behaviour graph), see Clemens

Kolbitsch, Paolo Milani Comparetti, Christopher
Kruegel, Engin Kirda, Xiaoyong Zhou, and Xiaofeng
Wang, ‘Effective and Efficient Malware Detection at
the End Host’, in USENIX Security ‘09, Montreal,

Canada, (August 2009), available at
http://www.iseclab.org/publications.html.

KNOWN KNOWNS, KNOWN UNKNOWNS AND UNKNOWN UNKNOWNS:
ANTI-VIRUS ISSUES, MALICIOUS SOFTWARE AND INTERNET ATTACKS FOR NON-TECHNICAL AUDIENCES

Report Date AV
Signature
Update

MW Corpus
Date

False
Negative
(%)

Scan Speed
(MB/sec)

2009/05 Feb. 9th Feb. 9th -16th [31-86] N/A

2009/02 Feb. 9th Feb. 1st [0.2-15.1] [24.0-3.7]

2008/11 Aug. 4th Aug. 4th -11th [29-81] N/A

2008/08 Aug. 4th Aug. 1st [0.4-13.5] [22.2-2.9]

2008/05 Feb. 4th Feb. 5th -12th [26-94] [25.5-1.6]

2008/02 Feb. 4th Feb. 2nd [0.2-12.3] N/A

The ability to disguise malicious software becomes

more subtle and unpredictable in the light of the

different methods by which devices now

communicate with each other.

127© Pario Communications Limited, 2009 Digital Evidence and Electronic Signature Law Review, Vol 6

minutes, not days, through active internet connections.
This remains to be seen, as the race between AV
companies and malicious software writers continues.

The problem with modern malicious software
Modern malicious software is interactive, polymorphic
and metamorphic. All these terms have to do with the
methods used to bypass the approach used by AV
products to detect malicious software (and other
signature-based defences such as intrusion detection
systems). Polymorphism and metamorphism are both
techniques to mutate the computer code of the
malicious software while keeping its malicious
functionality unchanged. The purpose of this is to evade
the signatures of AV.

Though the terms are sometimes used
interchangeably, there are technically different:
polymorphic malware typically uses encryption on parts
of its code containing its malicious functionality. This
code must be decrypted by a decryptor routine before it
can be executed. Typically, both the encryption and
decryption loops can be identified (in unencrypted form)
in the malicious software, although it is possible to out-
source this function to a remote server – called server-
side polymorphism. Hence, the main characteristics of
truly polymorphic malicious software are the use of
encryption and a fixed decryptor routine.

For detection purposes, encrypted code has a distinct
general signature (it has high entropy because of the
diffusion property of good encryption); as such, AV can
discern the existence of encrypted code, if not its
purpose or functionality. Benign code may also be
encrypted (and commonly is for intellectual property
reasons), thus limiting the usefulness of high entropy
detection approaches. The fixed decryptor routine of
truly polymorphic code can easily be picked up by byte-
pattern signature-based AV. It is for this reason that
writers of malicious software have devised schemes to
generate mutated, but functionally equivalent

decryptors in subsequent generations, leading to what
is called ‘oligomorphic’ code. Oligomorphic decryptor
mutation approaches in turn lead to the development of
‘metamorphic’ code.

Metamorphic code strives to change its appearance
from generation to generation, whilst ensuring that it
continues to function as it was designed to.
Metamorphic malicious software typically does not use
encryption. Instead, it is written in such a way that it
attempts to re-arrange the relative position of its code,
substitute certain instructions, register re-assignments,
changes sequence permutation and uses other
substitution or permutation techniques. Part of the
malicious code incorporates a metamorphic engine that
performs these alterations, or the malicious software
contacts a server for the task. If the latter, it makes
detection harder. Similarly to the truly polymorphic
case, a transformation engine residing in the code offers
more opportunities for detection purposes.

The ability to disguise malicious software becomes
more subtle and unpredictable in the light of the
different methods by which devices now communicate
with each other. In the widest sense, almost any form of
external input might cause malicious software to
become active or, more distressingly, provide a missing
piece of code to turn apparently innocuous fragments of
code into malicious software. Time is used as a
mechanism to cause malicious software to become
active through internal system clocks (the 1992
Michelangelo virus was activated in this way on the
anniversary of his birthday, 6 May), and human activity
in using the computer, opening a file or browsing a
website can also be used to activate malicious software.

As previously noted, the problem of identifying
malicious software is also exacerbated because of
ubiquitous connectivity. The vast majority of computers
are constantly interacting over the network (end users
have little choice in the matter, because software
licenses tend to be remotely attested), and at any

KNOWN KNOWNS, KNOWN UNKNOWNS AND UNKNOWN UNKNOWNS:
ANTI-VIRUS ISSUES, MALICIOUS SOFTWARE AND INTERNET ATTACKS FOR NON-TECHNICAL AUDIENCES

128 Digital Evidence and Electronic Signature Law Review, Vol 6 © Pario Communications Limited, 2009

moment, passive (as in a simple packet) and active (as
in code) prompts can be added to the recipient’s system
with no prior indication of what this single piece of code
will induce. A recent example was provided by the
fourth generation of the Conficker worm, when millions
of people waited to see what the code would do on the
1 April 2009.12

Theoretical AV concerns: detection complexity
As the empirical results suggest, meta- and polymorphic
coding techniques pose an aggravated detection
challenge for AV. In addition, malicious software has
become increasingly modular (utilizing ubiquitous
connectivity), and exhibits what is called ‘staged
downloads’. Staged downloads involve an initial
compromise in which a small piece of code is installed.
This is effected, for instance, by an network worm
exploiting an Operating System vulnerability (such as
the 2008 Gimmiv.A worm that targeted the Windows
MS08-67 vulnerability13) and depositing an initial
payload. It could also be effected by the user opening e-
mail attachments with malicious code attached, and
increasingly, through vulnerabilities in web browsers on
computers. The initial infection is subsequently followed
up with the installation of more malicious code to fulfil
one or more of the objectives that the code is designed
to carry out (among them spam relay, stealing of
personal information, industrial espionage). Almost 80
per cent of potential malicious code infection exhibit
these staged downloads.14

Malicious code communicates with its environment
for the purposes of propagation and to receive
instructions and download new binary code. As a result,
the AV detection problem becomes much more difficult.
It becomes much harder (impossible in the general
case) for AV to decide whether fragments of code are
malicious, since not all the pieces may have been
assembled. The changing dynamics of malicious code
and how it is created and disseminated (complete or in
small pieces, and then assembled), means that reliable
detection cannot realistically be achieved within time
constraints of seconds, if it can be done at all.

Anti-virus: epilogue
Because of the metamorphic and polymorphic

dissimulation techniques and the modular staged
downloads, current AV is not able to ascertain (within
acceptable false negative rates and time limits, and
sometimes not in principle) whether code is malicious
or not. Worse still, the methods by which an individual
can inadvertently download malicious software not only
include programs that might be explicitly installed, but
code that is installed and executed surreptitiously from
a visit to perfectly respectable websites, unbeknownst
to the user. The TDSS rootkit serves as an informative
case study that demonstrates how malicious software is
capable of being installed in seemingly innocuous parts
(in the form of a legitimate but maliciously patched DLL)
which enables the subsequent downloading and
execution of any other arbitrary (malicious) component.
Of further interest are the multiple methods of infection
used to infect a system (including website
vulnerabilities, peer-2-peer networks, video viewing and
other software).15

The user is faced with stark choices, none of which
mitigate the effects of these threats completely. She
may disable the functionality that makes web browsing
a rich experience to minimize the risk of attack. This
means, in effect, reverting back to using the web with
1995 technology.16 The user might decide to set up a
virtual environment that enables the computer to be
returned back to a known un-infected state, though this
demands a level of discipline that few users are capable
of. The Google Chrome web browser is a step in this
direction. It incorporates a light-weight virtualized
environment called GreenBorder that sets up a
protected browser that seeks to shield the computer
system from actions originating from browsing the
internet.17 The last choice is the worst and alas, the most
common: taking a deep breath, clicking away and
trusting anti-virus software to an extent that is not
warranted.

Inviting attacks from the internet
There are indications that some safe computing
procedures have begun to be understood by end users.
For instance, many users now know better than to open
e-mail attachments, and they are more mindful of
keeping their system patches and AV signatures up-to-
date. These measures offer some limited protection.

12 For a recent, sophisticated example of binary code
updates that is encrypted and electronically
signed, see Phillip Porras, Hassen Saidi, and Vinod
Yegneswaran, An Analysis of Conficker’s Logic and
Rendezvous Points, (SRI International Technical
Report), 2009 at http://mtc.sri.com/Conficker/ and
http://mtc.sri.com/Conficker/addendumC/index.ht

ml.
13 See http://www.microsoft.com/technet/

security/Bulletin/MS08-067.mspx for the
vulnerability and http://www.f-secure.com/v-
descs/trojan-spy_w32_gimmiv_a.shtml for a
description of the worm.

14 For which, see Symantec’s annual Global Internet

Threat Report at http://www.symantec.com/
business/theme.jsp?themeid=threatreport.

15 Alisa Shevchenko, ‘Case Study: The TDSS
Rootkit’, Virus Bulletin, May 2009, 10-14.

16 One example of a text-only web browser is lynx
(http://lynx.isc.org/).

17 GreenBorder was bought by Google in 2007.

KNOWN KNOWNS, KNOWN UNKNOWNS AND UNKNOWN UNKNOWNS:
ANTI-VIRUS ISSUES, MALICIOUS SOFTWARE AND INTERNET ATTACKS FOR NON-TECHNICAL AUDIENCES

129© Pario Communications Limited, 2009 Digital Evidence and Electronic Signature Law Review, Vol 6

However, the act of browsing the web is more fraught
with danger than commonly assumed. Web clients are
now increasingly used for banking, health care,
governmental services, and retail shopping from the
comfort of one’s home. Contemporary browsers, such as
Internet Explorer, Opera and Firefox incorporate more
functions than the mere display of text and images,
including rich dynamic content comprising media
playback and interactive page elements such as drop-
down menus and image roll-overs. These features
includes web browser extensions such as Javascript
programming language, as well as additional features
for the browser, such as application plugins (Acrobat
Reader, QuickTime, Flash, Real, and Windows Media
Player), and Microsoft-specific enhancements such as
Browser Helper Objects and ActiveX (Microsoft
Windows’s interactive execution framework). Some of
these extensions have security vulnerabilities that can
maliciously exploited (ActiveX, Flash, and QuickTime
make up the vast majority of plug-in vulnerabilities),18

some are general programming languages or
environments that can be tampered with for malicious
purposes.

The fundamental issue is one of trust. When the user
goes to a website from his browser, he types in a URL,
and initiates the connection. Assume the user is visiting
an on-line merchant, and assume an encrypted HTTPS
connection is established (which is considered ‘safe’
browsing). The user logs on with his name and
password, and a cookie is created. This cookie stores
user preferences, such as session information and
information about what the customer has purchased,
and this cookie is typically placed on the user’s
computer. Once connected, a relationship of trust is
established: the user and the website (the user initiated
the connection, and now trusts the page and content
display) and conversely, the site and the user (in
executing actions from the user’s browser). It is this
trust, together with the various features incorporated
into the browser that attackers try to subvert through
what is called Cross-Site Scripting (XSS) and Cross-Site
Request Forgery (CSRF) attacks.

Cross-site scripting attacks mostly use legitimate web

sites as a conduit, where web sites allow other
(malicious) users to upload or post links on to the web
site. Such links may contain malicious content (such as
Javascript in obfuscated form) within them. They are
then presented in an appealing manner (‘Click here to
view pictures!’) to entice the victim to click on them. The
malicious script in the link is executed in the victim’s
browser, and can copy cookie information, change user
preferences, write information to files, or (in the form of
a CSFR) obtain the data relating to log-ins to merchants
and banks to perform actions that purport to be
initiated by the customer. It is not only web servers can
serve as a conduit: in 2005, a user named Samy Kamkar
placed malicious Javascript on his MySpace profile.
When a user viewed his profile, an XSS attack would
add the user as a friend and place the malicious code in
the viewer’s profile. In twenty hours, over a million
MySpace users were infected.19

Prevention of XSS attacks requires both server and
client diligence. With respect to the server, software
developed for web applications should check links
posted by users for potentially malicious content, such
as embedded Javascript and HTML code. Since code in
such links would be executed in the browser of an
innocent user, failure to validate (potentially malicious)
input by users represents a software vulnerability that
developers should address as a matter of course. Where
users are concerned, they should exercise judicious care
when clicking on a link. They may also take steps to be
much less susceptible to XSS attacks. This can be
accomplished by disabling JavaScript, Java, Flash,
ActiveX and other dynamic content features in the
browser. However, users will incur a severe usability
penalty, since many websites depend on these features
for to be viewed at their best.

Cross-site Scripting attacks are often used as a
stepping stone with more insidious CSRF attacks in
which a user’s credentials are used for unauthorized
transactions. For example, assume the victim is logged
into a bank site. There are valid credentials, stored in
form of a cookie on the victim’s computer. The victim
might casually surf a news site where an attacker was
allowed to insert code of the sort illustrated below in a

18 In May 2009, the web-based Gumblar/JSRedir-R
trojan (which accounted for over forty per cent of
malicious content found on websites in the first
week of May) used obfuscated JavaScript via web
browsers to exploit vulnerabilities in Acrobat
Reader and Flash Player. See Erik Larkin, ‘New
Wave of “Gumblar” Hacked Sites Installs Google-
targeting Malware’, PC World, May 14, 2009 at
http://www.pcworld.com/article/164899/new_wave

_of_gumblar_hacked_sites_installs_googletargeti
ng_malware.html.

19 See Justin Mann, ‘MySpace speaks about Samy
Kamkar’s sentencing’, TechSpot.com, January 31,
2007, where the following was noted: ‘Samy
Kamkar (aka ‘Samy is my Hero’) plead guilty
yesterday in Los Angeles Superior Court to a
violation of Penal Code section 502(c)(8) as a
felony and was placed on three years of formal

probation, ordered to perform 90 days of
community service, pay restitution to MySpace,
and had computer restrictions placed on the
manner and means he could use a computer – he
can only use a computer and access the internet
for work related reasons’ at http://www.techspot.
com/news/24226-myspace-speaks-about-samy-
kamkars-sentencing.html.

KNOWN KNOWNS, KNOWN UNKNOWNS AND UNKNOWN UNKNOWNS:
ANTI-VIRUS ISSUES, MALICIOUS SOFTWARE AND INTERNET ATTACKS FOR NON-TECHNICAL AUDIENCES

130 Digital Evidence and Electronic Signature Law Review, Vol 6 © Pario Communications Limited, 2009

posting or comment on the web site:

http://www.bankoflondon.com/transfer.p
hp?account=686868&amount=25000

If the attacker succeeds in inducing the victim to click on
this link (‘Click here to look at Michael Jackson’s shroud’
might work), a transaction request from the user’s
browser to the bank would be generated, attempting to
transfer $25,000 to (presumably) the attacker’s account
number 686868.

Sometimes, it is not necessary to click on link on a
web site. The news web site might contain HTML code
(posted by the attacker) of the sort (purportedly to load
an image) as illustrated below:

<img src=
"http://bankoflondon.com/transfer.php?
account=686868&amount=25000 width="1"
height="1" border="0">

With this code, the browser will try to load a miniscule
image. This is a standard procedure to render images in
web pages. But the image is not an image: it is actually
a HTTP request to the fictional Bank of London,
attempting to transfer $25,000 from the victim to the
attacker’s account number 686868. There is no image
available, which means an error (crossed-out) image will
be rendered by the browser to the user’s screen. The
reason for setting the size at 1 pixel by 1 pixel is to
suppress this error image, and thus allay any suspicion
of the victim.

The nature of transactions that are possible to effect

depend on the site for which the credentials are valid.
This can range from a posting to a message board with
the user’s identity; performing bank transactions, to
changing the DNS settings of the home router (called
drive-by-pharming) and buying stocks. In February
2008, 18 million users of an e-commerce site in Korea
were affected by a CSFR attack.20

Similar to the XSS example, CSFR attacks can use
other conduits (Adobe Acrobat, MS Word, RSS),
provided these data formats allow for scripting. It must
be emphasized that from the point of view of the user,
neither HTTPS (the encrypted channel with the little lock
in the browser that denotes ‘safety’) nor logins protect
against XSS or CSRF attacks. In addition, unlike XSS
attacks which necessitate user action by clicking on a
link, CSFR attacks can be executed without the user’s
involvement, since they exploit explicit software
vulnerabilities on the server. However, it is to be notes
that CSFR attacks can be executed without the user’s
involvement, because they exploit explicit software
vulnerabilities (predictable invocation structures) on the
server. As such, it is suggested that the onus to prevent
CSFR attacks falls squarely on the developers of such
applications. Some login and cryptographic token
approaches, if conscientiously designed to prevent
CSFR attacks, can be of help.21

Epilogue
The wide variety of features that are included in
everyday programs (such as web browsers and
document viewers such as Adobe Acrobat Reader) are a
serious concern: almost no user is aware that merely
clicking on a URL, handling a PDF document22 or simply

20 For which see ‘WHID 2008-10: Chinese hacker
steals user information on 18 MILLION online
shoppers at Auction.co.kr’ at
http://www.webappsec.org/projects/whid/byid_id_
2008-10.shtml.

21 See the Secret Token scheme reviewed in Adam
Barth, Collin Jackson and John C. Mitchell, ‘Robust

Defenses for Cross-Site Request forgery’, in
Proceedings of the 15th ACM Conference on
Computer and Communications Security
(Alexandria, Virginia, USA, October 27-31, 2008).
CCS ‘08. ACM, New York, NY, 75-88, available from
http://flyer.sis.smu.edu.sg/srg/ and
http://www.adambarth.com/.

22 See http://blog.didierstevens.com/2009
/03/04/quickpost-jbig2decode-trigger-trio/ for an
example where merely looking at PDF files in
Windows Explorer (not opening them by double-
clicking) launches the malware.

KNOWN KNOWNS, KNOWN UNKNOWNS AND UNKNOWN UNKNOWNS:
ANTI-VIRUS ISSUES, MALICIOUS SOFTWARE AND INTERNET ATTACKS FOR NON-TECHNICAL AUDIENCES

It must be emphasized that from the point of view of the

user, neither HTTPS (the encrypted channel with the little

lock in the browser that denotes ‘safety’) nor logins

protect against XSS or CSRF attacks.

131© Pario Communications Limited, 2009 Digital Evidence and Electronic Signature Law Review, Vol 6

surfing on to a webpage23 may lead to a stealthy
compromise and install powerful malicious software. As
stated previously, a user has some protection against
malicious software by keeping their system
conscientiously patched, and maintaining up-to-date AV
software. AV performs best if signatures are
continuously updated, otherwise the practical detection
rate plummets very quickly. Interactive malicious
software, as well as user expectations,24 significantly
increases the difficulty of detection for AV software.

Hardware-based malicious code, which can be hidden
in underlying integrated circuits (manufactured in China,
and possibly compromised in the factory), will cause
even more problems. Hardware subversion is not within
the ability of AV software to deal with (in fact, it is an
open research problem as to how to detect such
malicious code in hardware at all). Hence, AV has its
limitations, and care must be taken to ensure a digital

evidence specialist, when examining a hard disk or live
RAM memory, is aware of the various methods by which
malicious software can be placed on a computer without
the knowledge or authority of the owner or user.25

© Daniel Bilar, 2009

23 Niels Provos, Dean McNamee, Panayiotis
Mavrommatis, Ke Wang, and Nagendra Modadugu,
‘The Ghost in the Browser: Analysis of Web-based
Malware’, Proceedings of the 1st conference on
First Workshop on Hot Topics in Understanding
Botnets (USENIX Association Berkeley, CA, USA,
April 2007), available in electronic format at
http://www.usenix.org/event/hotbots07/tech/full_p
apers/provos/provos.pdf.

24 Whether reasonable or not, users are not willing to
wait more than a couple of seconds to ascertain
whether they can open, execute or view a file, or
safely browse a website; nor are they willing to put
in the time or effort to gain reasonable safety
proficiency to operate what is increasingly complex
hardware and software.

25 By way of addendum, an investigation by
Associated Press has found a number of people in

the USA where a third party has caused abusive
images of children to be downloaded on to their
computer, which often results in criminal charges
that might or might not be withdrawn: Jordan
Robertson, ‘AP IMPACT: Framed for child porn —
by a PC virus’, AP Technology 8 November 2009 at
http://tech.yahoo.com/news/ap/20091108/ap_on_
hi_te/us_tec_a_virus_framed_me.

KNOWN KNOWNS, KNOWN UNKNOWNS AND UNKNOWN UNKNOWNS:
ANTI-VIRUS ISSUES, MALICIOUS SOFTWARE AND INTERNET ATTACKS FOR NON-TECHNICAL AUDIENCES

Daniel is an Assistant Professor in the Department of Computer
Science, University of New Orleans, Louisiana, United States of
America. He is a founding member of ISTS at Dartmouth
College (NH, USA), conducting counter-terrorism critical
infrastructure research for the US DoJ and US DHS. Active
research topics include detection and containment of highly
evolved malware and quantitative risk analysis and
management of networks.

daniel@cs.uno.edu

