
210 Digital Evidence and Electronic Signature Law Review, Vol 6 © Pario Communications Limited, 2009

Introduction
Many digital investigations deal with the theft of
intellectual property. A particularly common form of
intellectual property theft is when software
specifications in the form of source code are re-used
without permission. Unauthorized re-use can occur with
a complete program, but in many cases only parts of the
original program will have been copied. Even re-use of
small parts of an original can constitute an
infringement.

For the digital evidence specialist, investigating
source code infringement is a challenging task. In many
cases, the source code from both parties will be
available for inspection and the two sets of source code
can be compared by searching for similarities. Finding
similarities between two sets of source code is,
however, difficult when considering that each set may
contain hundreds of thousands of lines of code, and
even the smallest re-use may constitute an
infringement. Moreover, the programmer may have
changed much of the code when copying it, with the
result that finding similarities becomes even more
difficult.

Previously proposed methods for software and source
code analysis involve invoking methods from linguistic
forensics and other types of manual analysis.1 While the
current method for comparing source code is largely
based on manual analysis, there is a clear need to make
the process of source code comparison more efficient
and reliable by introducing automated methods. Such
methods would allow the investigator to find matching
areas in the two sets of source code, or areas having an
increased likelihood of constituting an infringement.
This article explores how hash analysis can be used as
an automated method in the analysis of source code
infringement.

Background
Software is written as source code. The source code is
written by the programmer, by entering instructions in
an editor. The sequence of instructions defines the
function of the program, such as taking input from the
user, performing calculations, showing output on the
screen and so on. This source code is then usually
compiled into an executable program (an executable file
causes a computer to perform tasks in accordance with
the instructions), which is distributed to the users of the
program. The source code cannot be derived completely
from the executable program.

In most software development processes, the
programmer will make many changes to the source
code during development. In this way, the programmer
gains experience with what works and what does not
work, and the quality of the program is improved. As the
software matures, it will reflect the experience and
know-how acquired during the development of the
program. Some of these experiences will be
reproducible from the programmers memory, but since
all of them are embodied in the source code, in most
cases it is much easier for the programmer to re-use the
source code itself than remaking the code from the
beginning. It is therefore desirable for any programmer
when making a new program, to re-use code from other
projects, either projects developed by himself or by
others. When this is done with the consent of the
copyright holder of the original source code, such code
re-use promotes efficiency and reliability and is highly
desirable. When done without consent however, the re-
use constitutes an infringement, establishing liability on
the part of the programmer and his employer, if
employed.

The most common reason for a programmer to want
to re-use code from a program without consent is a

1 Andrew Gray, Philip Sallis and Stephen MacDonell,
‘Software Forensics: Extending Authorship
Analysis Techniques to Computer Programs’,
Proceedings of the 3rd Biannual Conference of the
International Association of Forensic Linguists,

Durham NC, USA, International Association of
Forensic Linguists, (1997) 1-8, available at
http://isis.poly.edu/kulesh/forensics/docs/gray97s
oftware.pdf, and Eugene H. Spafford and Stephen
A. Weeber, ‘Software Forensics: Can We Track Code

to its Authors?’, Technical Report CSD-TR 92-010,
Purdue University, Department of Computer
Sciences, 1992.

By Svein Yngvar Willassen, PhD

LINE BASED
HASH ANALYSIS
OF SOURCE CODE
INFRINGEMENT

ARTICLE:



211© Pario Communications Limited, 2009 Digital Evidence and Electronic Signature Law Review, Vol 6

desire to reduce the amount of work associated with
software development. By using code developed by
others, the programmer reduces the work required with
development, debugging and testing. To do this, the
programmer needs the source code of the program he
wishes to copy from. This source code can be obtained
in a number of ways. Perhaps the most common type of
source code infringement is where an employee copies
source code when he leaves a company and re-uses it in
his new job or business. Another example is where the
source code has been published, but the right to
republish in other forms has not been granted. A typical
example is the case of the re-use of open source code
without adhering to the conditions set out to re-use the
code. A common requirement for re-using source code
from open source projects, is for all the new source
code in the project to be published as well. Any re-use
without adhering to this requirement is an infringement.
Further, some investigations involve industrial
espionage. It may, for example, be the case that source
code is stolen by computer intrusion, and the code has
been re-used to simplify the development of a
competing product.

In cases involving the theft of source code, the
investigator often needs to compare two different sets
of source code, one belonging to the originator, and one
belonging to the alleged infringer. Comparing two sets
of source code can be an exceedingly difficult task,
since each of the sets may contain hundreds of
thousands of lines of code, and the infringing part may
consist of only a few hundred lines. The code may also
have been changed extensively from the original, so
that it can be difficult to notice the infringing portions of
code.

Hash analysis
A digital hash is a checksum computed from an input
text using a cryptographic hashing algorithm. The hash
has a fixed length regardless of the length of the input
text, and is computed in such a way that even the
slightest modification of the input text will result in a
completely different hash. Thus for all practical
purposes, if the hash of two different input texts are
equal, then the input texts are equal as well.

The current use of hash analysis in digital forensics is
for the most part based on computing the hash for each

file in a set of files.2 Since it is much easier for a
computer to sort and compare a list of hashes than a list
of files, this makes it simpler to find files with equal
content among a large number of files. The hashes can
then be used to identify files that are illegal to possess,
such as images of child exploitation. The investigators
can quickly identify images that are already known to be
images of child exploitation, without having to look
through each and every image. Another common use of
hashes in digital forensics is to exclude known files for
analysis. For example all files belonging to the Windows
operating system could be excluded, thereby reducing
the workload when looking for the suspect’s activities.

A good hashing algorithm has an even distribution
function, which means that given a random input, no
resulting check sum is more likely than any other.
Further, a good hashing algorithm is required to avoid
collisions. Since the output of a hash function has a
fixed length, and the input length is arbitrary, it is
theoretically impossible to make a hash function that
never produces the same output with two different input
texts. But with a good hashing algorithm, it is
impossible to engineer an input text that will produce
the same hash as a different input text. If this objective
is fulfilled, it is impossible to create a meaningful input
text with the same hash as another meaningful input
text.

The most common currently used hashing algorithms
are MD5 and SHA1. Both algorithms have been shown
to have weaknesses.3 These weaknesses do not,
however, imply that different meaningful texts can be
created with the same hash. Therefore, in the context of
using hashes for identification in digital forensics, these
weaknesses have a limited effect.4

Line based hash analysis
In the comparison of two different sets of source code, it
would be useful to utilize hash analysis for the
identification of parts of the alleged infringing program
that could be identical to parts of the original program.
Such an analysis would allow the initial analysis for
such comparisons to be performed automatically,
something that would greatly simplify the further
comparison of the two different sets of source code.

When analyzing source code, hashes can be used to
identify equal portions of code. The first question to be

2 Eoghan Casey, Digital Evidence and Computer
Crime, (Second edition, Academic Press, 2004).

3 X. Wang, F. Guo, A. Lai and H. Yu, ‘Collisions for
Hash Functions MD4, MD5, HAVAL-128 and
RIPEMD’, Rump Session of Crypto’04 and IACR

Eprint Archive, August 2004 and S. Manuel,
‘Classification and Generation of Disturbance
Vectors for Collision Attacks against SHA-1’,
International Workshop on Coding and
Cryptography, 10-15 May 2009, Ullensvang,

Norway.
4 Eric Thompson, ‘MD5 collisions and the impact on

computer forensics’, Digital Investigation, 2:1,
2005, 36-40.

LINE BASED HASH ANALYSIS OF SOURCE CODE INFRINGEMENT



212 Digital Evidence and Electronic Signature Law Review, Vol 6 © Pario Communications Limited, 2009

LINE BASED HASH ANALYSIS OF SOURCE CODE INFRINGEMENT

determined when using hash analysis on source code is
how to divide the source code into portions to be
hashed. A clear possibility is to hash files. Any findings
based on this methodology would then require that a
complete file is equal in the two source code sets. Even
the slightest change in the file after it has been copied
to the infringing program would result in a different
hash for the file, and the similarity between the files
would go unnoticed. A different approach would be to
do a hash analysis on line-level or even on word level in
the source code file. A problem with a word-level
approach is that since it would report every equal word
in the two source code sets, it would produce a large
number of false hits – hits where the equality of two
words did not necessarily imply that the code was
stolen. This is especially true for source code, where the
syntax is dictated by the programming language
involved.

In this work, it is proposed to use line based hash
analysis for such comparison. In this approach, a hash
for each and every line of source code in both source
code sets is computed. The hashes can then be sorted,
and hashes occurring in both sets can be isolated. The
hashes occurring in both sets represent ‘hits’, meaning
that particular lines of code can be found in both sets of
source code, both the original code set and the alleged
infringing code set. With a line based hash analysis
approach, it is to be expected that some of the hits will
represent false positives – lines of code that does not
imply that copying has occurred. Typical examples
would be empty source code lines, or lines containing
keywords required by the programming language
syntax or convention to appear on their own line. On the
other hand, a line based approach provides an
opportunity to discover more complex lines or source
code that if found to be equal in the two sets of source
code, would indicate that the two sets have a common
source.

Line hash initial experiment
To perform an initial assessment of line hashing as a
tool for source code comparison, an experiment was
performed with two sets of source code known to have
different origins and without any copied code from one
set of source code to the other, but programmed in the
same programming language, Java. Set one comprised
of 215 files of Java code with a total of 60000 code lines.
Set two comprised of 45 files of Java code with a total of
10000 code lines. The two code sets can be

characterized as fairly typical Java development
projects, where set one is significantly larger than set
two. The source code of both projects is formatted
according to common conventions among Java
developers.

The amount of work required to do a manual
inspection of the two code sets would be vast. For
example, if every code line in code set one was to be
examined for similarity with every code line in code set
two, this would require 60000 x 10000 = 600,000,000
comparisons. Such an examination would surely be
unfeasible.

The MD5 hash was calculated for each code line in
both sets one and two, and sorted the resulting hash
sums, to provide a set of check sums for each code set
where each check sum appear only once. (Thus,
duplicate code lines were removed within each code
set.) Duplicate code lines were then found by
calculating the intersection of the set of hashes from
code set one and the set of hashes from code set two.
The result was 114 hashes, representing code lines that
exist at least once in both code sets. This number of
code lines can easily be examined manually, indicating
that the huge task of comparing all lines of both sets
has been reduced to a much simpler task. Examination
of the 114 equal code lines revealed that they were all
related to words dictated by the syntax of the Java
programming language, which by convention was
placed on their own line.

As expected, the examination did not produce any
result indicating that source had been copied from one
project to another. The experiment showed how line
hashing can make comparison of all source lines in two
projects feasible.

Source code comparison in a real case 
Based on the results in the initial experiment, a similar
method was used in a real case of alleged source code
infringement. It was possible to obtain two different
sets of source code used in two different systems
belonging to each of the parties in the alleged
infringement investigation. In this case, most of the
alleged infringing source code had been developed by a
consultant who had previously been employed by the
other party. The allegation was that the employee had
copied parts of the source during his consultant
assignments.

The two sets of source code were both programmed in
the programming language PL/SQL for the Oracle



213© Pario Communications Limited, 2009 Digital Evidence and Electronic Signature Law Review, Vol 6

database system. Set one consisted of 614 files with a
total of 97717 code lines. Set two (the alleged infringing
code set) consisted of 598 files with a total of 62035
code lines. As with the initial experiment, a manual
comparison of these large sets of code would be
infeasible.

The MD5 hash was calculated for each code line in
both sets one and two, and sorted the resulting hash
sums, producing a set of check sums for each code set
where each check sum appear only once. Duplicate
code lines were then found by calculating the
intersection of the set of hashes from code set one and
the set of hashes from code set two. The result was 1031
hashes, representing code lines that exist at least once
in both code sets. The code lines represented by these
1031 hashes were examined manually. As in the initial
experiment, some of the duplicate code lines were code
lines representing language syntax and convention. But
in this case, many of the duplicate lines also contained
named entities such as variable names, table names
and column names. On closer examination of the files in
which these duplicates were found, it was determined
that entire sections of code in code set two was equal to
sections in code set one. Some of the source lines in
these sections had been changed, by changing variable
names and function names. Many of the other code
lines were, however, unchanged. These sections also
contained comments (which are not subject to
programming language syntax) with identical wording,
and in some cases even identifying the name of the
programmer and date the section was programmed.
With these results, there could be no doubt that these
sections had a common origin in the two different sets
of source code. Further, since the code contained
functionality that was typical for one of the source code
sets, and the named programmers had worked for one
of the parties, it could be concluded that the sections in
question had been copied from one of the source code
sets to the other.

Evaluation
The experiments described above show that line
hashing can be a valuable tool when investigating
alleged source code infringement, by allowing the
investigator to compare all code lines in two different
sets of source code simultaneously. The investigator can
use this technique to find duplicate lines and can then
assess the duplicates to determine if they indicate that
source code was copied.

In using this technique, it is important to understand

that quantitative analysis of the results has limited value.
The number of duplicates does not by itself indicate if
there is a source code infringement or not. As already
mentioned, duplicates may arise from syntax and
conventions in the programming language. Such
duplicates do not indicate source code infringement, and
the number of such duplicates may vary with the
language used. Further, it may be the case that both
projects have included source from other projects that
may not constitute infringements. It is therefore
necessary to manually inspect the duplicate source code
lines to assess if they represent an infringement or not.

The proposed method can assist in finding duplicate
source code lines. Since the method reports exact hash
matches, only exact duplicates will be detected. Only a
slight change in source code will result in a line not
being reported as a duplicate. This will occur if, for
example, the programmer has changed variable names,
function names or made other small changes to source
code. However, as indicated by the results set out
above, if source code has been copied, there will usually
be a significant number of unchanged code lines. When
the investigator inspects these duplicates, he will also
see the source lines between the duplicates, and can
then manually determine if these are code lines from
the original with only minor changes.

Conclusion
Two sets of source code can be investigated for source
code infringement by calculating a hash checksum for
each code line, and then comparing all hashes from
both sets of source code. Line hashing is an efficient
method for finding areas of possible source code
infringement. In order to conclude whether source code
is infringing or not, a manual analysis of the results of
line hashing has to be performed.

© Svein Yngvar Willassen, 2009

LINE BASED HASH ANALYSIS OF SOURCE CODE INFRINGEMENT

Svein Yngvar Willassen has a PhD in Digital Investigation from
the Norwegian University of Science and Technology. He
previously worked for the Norwegian Police and has conducted
a large number of digital investigations both in the public and
private sector. He currently runs his own business focusing on
digital investigation and electronic evidence.

http://www.willassen.no/
svein@willassen.no




