FIRMWARE
FORENSICS: BEST
PRACTICES IN
EMBEDDED
SOFTWARE SOURCE
CODE DISCOVERY

By Michael Barr

Software has become ubiquitous, embedded, as it
is, into the fabric of our lives in literally billions of
new (non-computer) products per year, from
microwave ovens to electronic throttle controls.
When products controlled by software are in the
subject of litigation, whether for infringement of
intellectual property rights or product liability, it
is imperative to analyze the embedded software
(also known as firmware) properly and
thoroughly. This article enumerates five best
practices for embedded software source code
discovery and the rationale for each.

In February 2011, the U.S. government’s National
Highway Traffic Safety Administration and a team from
NASA’s Engineering and Safety Center published reports
of their joint investigation into the causes of unintended
acceleration in Toyota vehicles. While NHTSA led the
overall effort and examined recall records, accident
reports, and complaint statistics, the more technically
focused team from NASA performed reviews of the
electronics and embedded software at the heart of
Toyota’s “electronic throttle control subsystem” (ETCS).!

These reports are very interesting in what they have
to say about the quality of Toyota’s firmware and NASA’s
review of the same. However, of greater significance is
what they are not able to say about unintended
acceleration. It appears that NASA did not follow a
number of best practices for reviewing embedded
software source code that might have identified useful
evidence. In brief, NASA failed to find a firmware cause
of unintended acceleration — but their review also fails
to rule out firmware causes entirely.

1 Redacted public versions of the official reports
from each agency, together with a number of
related documents, can be found at
http://fwww.nhtsa.gov/UA.

Digital Evidence and Electronic Signature Law Review, Vol 8

This article describes a set of five recommended
practices for firmware source code review that are
based on the experiences of the author as an embedded
software developer and as an expert witness. Each of
the recommendations will consider what more could
have been done to determine whether Toyota’s ETCS
firmware played a role in any of the examples of
unintended acceleration. The five recommended
practices are: (1) ask for the list of faults?; (2) insist on
an executable program; (3) reproduce the software
build tools setup; (4) request the version control
repository; and (5) remember that the hardware is also
significant and should not be overlooked. The relative
value and importance of the individual practices will
vary by the type of litigation.

Ask for the list of faults

Depending on the facts at issue, litigation involving
embedded software will require an expert review of the
source code. The source code should be requested early
in the process of discovery. Owners of source code tend
to strenuously resist such applications, but procedures
limiting access to the source code to only certain named
and pre-approved experts and only under physical
security (often a non-networked computer with no
printer or removable storage in a locked room) tend to
be agreed upon or ordered by a judge.

Software development organizations commonly keep
additional records that may prove more important or
useful than a mere copy of the source code. Any
reasonably thorough software team will maintain a fault
list (also known as a defect database) describing most
or all of the problems observed in the software,

2 In the industry, faults are commonly called ‘ bugs’.

© Pario Communications Limited, 2011



FIRMWARE FORENSICS: BEST PRACTICES IN EMBEDDED SOFTWARE SOURCE CODE DISCOVERY

together with the current status of that fault (for
instance, “fixed in v2.2” or “still under investigation”).
The list of faults fixed and known — or the company’s
lack of such a list — is germane to issues of software
quality. Thus the fault list should be routinely requested
and supplied in discovery.

Very nearly every piece of software ever written has
defects, both known and unknown. Thus the fault list
provides helpful guidance to a reviewer of the source
code. Often, for example, faults cluster in specific
source files in need of major rework. To ignore the
company’s own records of known faults, as the NASA
reviewers apparently did, is to examine a constitution
without considering the historical reasons for the
adoption of each section and amendment. Indeed, a
simple search of the text in Toyota’s fault list for the
terms “stuck” and “fuel valve” might yet provide some
useful information about unintended acceleration.

Insist on an executable program

In software parlance, the “executable” program is the
binary version of the program that is actually executed
in the product. The machine-readable executable is
constructed from a set of human-readable source code
files using software build tools such as compilers and
linkers. It is important to recognize that one set of
source code files may be capable of producing multiple
executables, based on tool configuration and options.

Though not human-readable, an executable program
may provide valuable information to an expert reviewer.
For example, one common technique is to extract the
human-readable “strings” within the executable. The
strings in an executable program include information
such as on-screen messages to the user (e.g., “Press
the “?’ button for help.”). In the experience of the author,
in a copyright infringement case, several strings in the
defendant’s executable helpfully contained a phrase
similar to “Copyright Plaintiff”!

It may also be possible to reverse engineer or
disassemble an executable file into a more human-
readable form. Disassembly could be important in cases
of alleged patent infringement, for example, where what
looks like an infringement of a method claim in the
source code might be unused code or not actually part
of the executable in the product as used by customers.

Sometimes it is easy to extract the executable directly

3 Itis also recommended that a request be made for
copies of software design documents, coding
standards, build logs and associated tool outputs,
testing logs, and other artifacts of the embedded
software design and development process.

4 Note that if it is possible for the expert to extract

© Pario Communications Limited, 2011

an executable from one or more exemplars of the
product, an automated comparison should always
be made between the installed and produced
binary files. It is not certain what might be found,
and any difference could have important
implications for the facts underlying the case.

from the product for expert examination — in which case
the expert should engage in this step. For instance,
software running on Microsoft Windows consists of an
executable file with the extension .EXE, which is easily
extracted. However, the executable programs in most
embedded systems are difficult, at best, to extract.*
Extraction of Toyota’s ETCS firmware might not be
physically possible. Thus the legal team should insist on
production of the executable(s) actually used by the
relevant customers.

Reproduce the software build tools setup

The dichotomy between source code and executable
code, and the inability of even most software experts to
make much sense of binary code can create problems in
the factual landscape of litigation. For example,
presume that the source code produced by Toyota was
inadvertently incomplete in that it was missing two or
three source code files. Even an expert reviewer looking
at the source code might not know about the absent
files. For example, if the fault the expert is looking for is
related to fuel valve control and the code related to that
subject does not reference the missing files, the
reviewer may not notice their absence. No expert can
spot a fault in a missing file.

Fortunately, there is a reliable way for an expert to
confirm that she has been provided with all of the
source code. The objective is simply stated: reproduce
the software build tools setup and compile the
produced source code. To do this it is necessary to have
a copy of the development team’s detailed build
settings, such as make files, preprocessor defines, and
linker control files. If the build process completes and
produces an executable, it is certain the other party has
provided a complete copy of the source code.®

Furthermore, if the executable as built matches the
executable as produced (actually, ideally, the executable
as extracted from the product) bit by binary bit, it is
certain that the other party has provided a true and
correct version of the source code. Unfortunately, trying
to prove this part may take longer than just completing
a build; the build could fail to produce the desired proof
for a variety of reasons. The details here get
complicated: to get exactly the same output executable,
it is necessary to use all of the following: precisely the
same version of the compiler, linker, and each other

5 Further additional technical details include the
need to start with a “clean” set of files that
contains no object files or libraries, and it may be
necessary to obtain third-party header files or
libraries.

Digital Evidence and Electronic Signature Law Review, Vol 8



FIRMWARE FORENSICS: BEST PRACTICES IN EMBEDDED SOFTWARE SOURCE CODE DISCOVERY

build tool as the original developers; precisely the same
configuration of each of those tools; and precisely the
same set of build instructions. Even a slight variation in
just one of these details will generally produce an
executable that does not match the other binary image
at all —just as the wrong version of the source code
would.

Request the version control repository

Embedded software source code is never created in an
instant. All software is developed one layer at a time
over a period of months or years in the same way that a
bridge and the attached roadways exist in numerous
interim configurations during their construction. The
version control repository for a software program is like
a series of time-lapse photographs tracking the day-by-
day changes in the construction of the bridge. But there
is one considerable difference: it is possible to go back
to one of those source code snapshots and rebuild the
executable of that particular version. This becomes
critically important when multiple software versions will
be issued over a number of years. In the automotive
industry, for example, it must be possible to give one
customer a fault fix for his v2.1 firmware while also
working on the new v3.0 firmware to be released the
following model year.

Consider, for the sake of discussion, that the
executable version of Toyota’s ETCS v2.1 firmware that
was installed in the factory in one million cars around
the world had an undiscovered fault that could result in
unintended acceleration under certain rare operating
conditions. Now further suppose that this fault was
(perhaps unintentionally) eliminated in the v2.2 source
code, from which a subsequent executable was created
and installed at the factory into millions more cars with
the same model names — and also as an upgrade into
some of the original one million cars as they visited
dealers for scheduled maintenance. In this scenario, an
examination of the v2.2 source code proves nothing
about the safety of the hundreds of thousands of cars
still with v2.1.

Gaining access to the entire version control repository
containing all of the past versions of a company’s
firmware source code through discovery may be out of
the question. For example, a judge might only allow the
plaintiff to choose one calendar date and to receive a
snapshot of the defendant’s source code from that
specific date. If the plaintiff was lucky, it would find

Digital Evidence and Electronic Signature Law Review, Vol 8

evidence of their proprietary code in that specific
snapshot. But the observed absence of their proprietary
code from that one specific snapshot does not prove an
alleged theft did not happen earlier or later in time.

There are some problems with examination of an
entire version control repository. It may be difficult to
make sense of the repository’s structure. Or, if the
structure can be understood, it might take many times
as long to perform a thorough review of the major and
minor versions of the various source code files as it
would to just review one snapshot in time. At first
glance, many of those files would appear the same or
similar in every version — but subtle differences could be
important to making a case. To really be productive with
that volume of code, it may by necessary to obtain a
chronological schedule provided by a fault list or other
production documents describing the source code at
various points in time.

Remember that the hardware should not
be overlooked

Embedded software is always written with the hardware
platform in mind and should be reviewed in the same
manner. For example, it is only possible to properly
reverse engineer or disassemble an executable program
once the specific microprocessor (e.g., Pentium,
PowerPC, or ARM) is known. But knowing the processor
is just the beginning, because the hardware and
software are intertwined in complex ways in such
embedded systems.

Only one or more features of the hardware are
enabled or active when the hardware is in a particular
configuration. For instance, consider an embedded
system with a network interface, such as an ethernet
jack that is only powered when a cable is mechanically
inserted. Some or all of the software required to send
and receive messages over this network may be not be
executed until a cable is inserted. A proper analysis of
the software needs to keep the interactions between
hardware and software such as this in perspective.
Ideally, the testing of the firmware should be
undertaken on the hardware as configured in exemplars
of the units at issue — so is it useful to ask for hardware
at the discovery phase if you are not able to acquire
exemplars in other ways. It is not clear from the
redacted reports if NHTSA’s testing of certain Toyota
Camrys was done using the same firmware version on
exactly the same hardware as the owners who

© Pario Communications Limited, 2011



FIRMWARE FORENSICS: BEST PRACTICES IN EMBEDDED SOFTWARE SOURCE CODE DISCOVERY

experienced unintended acceleration. Hardware
interactions can be one of the most important
considerations of all when analyzing embedded
software.

Sometimes a fault is not visible in the software itself.
Such a fault may result from a combination of hardware
and software behaviours or multi-processor interactions.
For example, one motor control system the author is
familiar with had a dangerous race condition.® The fault
was the result of an unforeseen mismatch between the
hardware reaction time and the software reaction time
around a sequence of commands to the motor.

Additional analysis

The review of embedded software can be complicated.
This is partly because the hardware on each embedded
system is unique. In addition, the system as a whole
generally involves complex interactions between the
hardware, software and user. An expert in embedded
software should typically have a degree in electrical
engineering, computer engineering, or computer
science plus years of relevant experience designing
embedded systems and programming in the relevant
language(s).

The five best practices presented here are meant to
establish the critical importance of making certain
specific requests early in the legal discovery process.
They are by no means the only types of analysis that
should be performed on the source code. For example,
in any case involving the quality or reliability of
embedded software, the source code should be tested
via static analysis tools. This and other types of

6 Michael Barr, Firmware-Specific Bug #1: Race
Condition, 11 February 2010, available at
http://embeddedgurus.com/barr-
code/2010/02 /firmware-specific-bug-1-race-
condition/.

© Pario Communications Limited, 2011

technical analysis should be well understood by any
expert witness or litigation consultant with the proper
background.

In the case of unintended acceleration in relation to a
number of vehicles manufactured by Toyota, it is
suggested that consideration should be given to
critically analyze more fully the government analysis
that has been discussed in this article and elsewhere. It
is anticipated that expert review in the class action
litigation against Toyota in the U.S. will identify all of the
causes and determine if embedded software played any
role in the accidents that occurred. Though funds for
analysis by NASA are understandably limited, it is
suggested that transportation safety organizations,
such as NHTSA, should establish rules that ensure that
safety-related technical findings in litigation are not
hidden behind the secrecy of a settlement agreement.

© Michael Barr, 2011

Michael Barr, BSEE, MSEE is a former lecturer at the
University of Maryland and has written extensively on
embedded systems design. Mr Barr has testified as an expert
witness in US and Canadian cases covering patent
infringement and validity, software quality, theft of
copyrighted source code, and satellite TV piracy.

mbarr@netrino.com

http://michaelbarr.info

Digital Evidence and Electronic Signature Law Review, Vol 8



