

ARTICLE:

The Law Commission presumption concerning
the dependability of computer evidence

An Invited Paper By

Peter Bernard Ladkin, Bev Littlewood, Harold Thimbleby and Martyn Thomas CBE

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License Digital Evidence and Electronic Signature Law Review, 17 (2020) | 1

We consider the condition set out in section 69(1)(b)
of the Police and Criminal Evidence Act 1984 (PACE
1984) that reliance on computer evidence should be
subject to proof of its correctness, and compare it to
the 1997 Law Commission recommendation that a
common law presumption be used that a computer
operated correctly unless there is explicit evidence to
the contrary (LC Presumption). We understand the LC
Presumption prevails in current legal proceedings. We
demonstrate that neither section 69(1)(b) of PACE
1984 nor the LC presumption reflects the reality of
general software-based system behaviour.

The Law Commission proposals

In Part XIII of Evidence in Criminal Proceedings:
Hearsay and Related Topics,1 the Law Commission
considered in 1997 the rationale behind section 69 of
the Police and Criminal Evidence Act 1984. Section 69
of PACE 1984 stated, among other things:

(1) In any proceedings, a statement in a
document produced by a computer shall not
be admissible as evidence of any fact stated
therein unless it is shown –

(a) that there are no reasonable
grounds for believing that the
statement is inaccurate because of
improper use of the computer;

(b) that at all material times the
computer was operating properly, or
if not, that any respect in which it was
not operating properly or was out of
operation was not such as to affect
the production of the document or
the accuracy of its contents; and ……...

Condition (1)(b) was considered by the Law

1 The Law Commission, Evidence in Criminal Proceedings:
Hearsay and Related Topics (1997),
http://www.lawcom.gov.uk/app/uploads/2015/03/lc245_Legisl
ating_the_Criminal_Code_Evidence_in_Criminal_Proceedin
gs.pdf.

Commission, accurately in our opinion, to be a
significant imposition on those wishing to introduce
evidence concerning computer operation, for two
reasons.

First, for any moderately complex software-based
computer system, such as the IT transaction-
processing system Horizon used by Post Office
Limited,2 it is a practical impossibility to develop such
a system so that the correctness of every software
operation is provable to the relevant standard in legal
proceedings. Any such proofs3 require the use of
mathematical-logical analysis methods (called formal
methods) in the development of software. With the
exception of certain computer-based OT4 systems
involved in safety-critical operations, such as aircraft
control systems, at the time the Law Commission was
writing (1997), the use of formal methods to
guarantee correctness was not common in general IT-
system software development. Nor is it so even today.
Some of the authors have been involved for more
than a decade in attempts to describe applicable,
industrially mature formal methods in international
standards for safety-critical OT systems. We can attest
to the considerable resistance – even now – to any
requirement for use of such methods, even in the
development of such critical systems.

It is clearly impractical for a requirement such as set
out in section 69(1)(b) of PACE 1984 to expect
evidence of a type that can only be obtained by using
methods which the software industry generally has
not used, and remains resistant to using, and which

2 Which has been the subject of recent legal proceedings, for
which see Bates v the Post Office Ltd (No 6: Horizon Issues)
[2019] EWHC 3408 (QB).
3 It is important to note that attempts at such proofs might
well not succeed, because the software is too complex for
the proving technology. This is a standard difficulty with the
application of such rigorous methods.
4 “OT” stands for “operational technology”, similar to “IT” for
“information technology”. Control systems run by digital
computers are OT. The LC considers “documents produced
by a computer”, e.g., in paragraph 13.4. This looks to us as if
it refers primarily to IT, since OT generally does not produce
documents, but rather produces actions.

http://www.lawcom.gov.uk/app/uploads/2015/03/lc245_Legislating_the_Criminal_Code_Evidence_in_Criminal_Proceedings.pdf
http://www.lawcom.gov.uk/app/uploads/2015/03/lc245_Legislating_the_Criminal_Code_Evidence_in_Criminal_Proceedings.pdf
http://www.lawcom.gov.uk/app/uploads/2015/03/lc245_Legislating_the_Criminal_Code_Evidence_in_Criminal_Proceedings.pdf

The Law Commission presumption concerning the dependability of computer evidence vvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 2

might in any given case not necessarily succeed very
well. There may well be a reason for a law requiring
that critical systems be developed using such
methods, and such a law could then render a
requirement such as that of PACE section 69(1)(b)
feasible. But that law must come first, and it is not
there yet.

Second, no matter the quality of the software, the
computer hardware on which the software runs is
necessarily constrained in the resources available to
it. Hardware may, in the course of operations, be
modified or constrained. By way of example, it may be
exchanged or up-graded for other hardware, which
may have different constraints on resources (such as
size of memory or available disk space), or otherwise.
These actions may cause the operations of even
logically-impeccable software to act in such a way that
they no longer fulfil their original intent; they may
even behave unpredictably. This phenomenon is
manifest in the increasing numbers of cybersecurity
incidents, in which malware5 is inserted into running
systems to subvert their operations. Stuxnet
(considered below) and Triton are examples of
malware deliberately inserted into OT systems, in this
case industrial process control systems, to cause them
to fail (successfully in both cases). There is not even a
theoretical technical solution to this drawback that
will lead to reliable practical countermeasures.

The Law Commission wrote (original footnote
omitted):

13.3 … section 69 … must be examined against
the requirement that the use of computer
evidence should not be unnecessarily
impeded, while giving due weight to the
fallibility of computers.

13.4 … section 69 … provides that a document
produced by a computer may not be adduced
as evidence of any fact stated in the
document unless it is shown that the
computer was properly operating and was not
being improperly use …

13.5 In essence, the party relying on
computer evidence must first prove that the
computer is reliable… This can be proved by

5 That is, malicious software inserted into a system contrary
to the intent of the manufacturer of the system. Malware is
most often software, more rarely hardware, as in the cases
mentioned. But cases in which hardware is surreptitiously
reconfigured are not unknown.

tendering a written certificate, or by calling
oral evidence …

Here we note some technical terminology. In
electrotechnical terms, “reliability” means “ability to
perform as required, without failure, for a given time
interval, under given conditions”.6 That is a notion of
absolute perfection. However, as we shall note below,
most software contains defects, at the rate (see our
discussion below) of generally between 1 and 100
defects per 1,000 lines of source code (LOC; 1,000 LOC
is often referred to as 1 kLOC).7 The lower defect
bound of around 1 per kLOC is generally attained only
by carefully developed specialist safety-critical OT
software, and not always. In general terms, none of us
are aware of any non-trivial software-based system
which can be shown to be reliable in the absolute
sense given in the IEC definition.

There is a branch of software engineering that
estimates failure rates of software in operation, and
attempts to draw conclusions about the properties of
the software from an analysis of the statistics. This
branch is known as “software reliability” or “software
reliability engineering”.8 Software reliability does not
deal in perfection (for, as we remarked, we do not
know of any practical instance of perfection in non-
trivial software), but in estimating the chance of
failure in operation, over a given time interval, to a
given level of confidence (usually expressed either as
a percentage or as a probability, equivalently). Such
estimates are required, for example, by the UK
Nuclear Regulator for assessing the performance of
software-based emergency systems in UK nuclear
power stations.

It is not yet clear to us from any legal reasoning we
have read, largely about chances of failure of software
in specific ways (e.g, R v Seema Misra,9 and Bates v
Post Office Ltd (No 6: Horizon Issues)10), how such

6 International Electrotechnical Vocabulary, definition 192-01-
24, available at
http://www.electropedia.org/iev/iev.nsf/display?openform&iev
ref=192-01-24.
7 The average reported by Humphrey (see below) was more,
but very carefully constructed code achieved less.
8 The prestigious International Symposium on Software
Reliability Engineering (ISSRE) has been running for over 30
years.
9 T20090070, In the Crown Court at Guilford, Trial dates: 11,
12, 13, 14, 15, 18, 19, 20, 21 October and 11 November
2010, His Honour Judge N. A. Stewart and a jury, 12. Digital
Evidence and Electronic Signature Law Review (2015)
Introduction, 44 – 55; Documents Supplement.
10 [2019] EWHC 3408 (QB).

http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=192-01-24
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=192-01-24

The Law Commission presumption concerning the dependability of computer evidence vvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 3

general estimates would be of use in legal
proceedings. Estimates that a particular failure
phenomenon will or will not manifest over a certain
period of use requires reviewing the data from many
hours of operation (typically over many years – even
many hundreds of years when covering a collection of
systems) as well as meticulous recording of failure, to
a degree of rigour that is not found in most IT
operations. We comment further on the
phenomenology of software failure and its statistical
foundations in the Appendix.

The Law Commission cites Colin Tapper on IT-system
error:

13.7 … As Professor Tapper has pointed out,
“most computer error is either immediately
detectable or results from error in the data
entered into the machine”.13

13 C Tapper, “Discovery in Modern Times: A Voyage
around the Common Law World” (1991) 67 Chicago-Kent
Law Review 217, 248.

Let us call the condition that a computer error “is
immediately detectable or results from error in input
data” the “Tapper Condition”. We were surprised to
read Tapper’s suggestion that the Tapper Condition
categorises “most computer error”, even allowing
that he was writing in 1991. Reading the original
paper, it seems to us as if Professor Tapper was not
categorising “most computer error” in unqualified
terms, but rather considering particular phenomena
that are manifest in the use of one specific sort of IT
system, namely systems commonly used for clerical
work (maybe, more specifically, for legal-clerical
work). The Tapper Condition does not appear to hold
in general.

For example, anyone who has used a spreadsheet
program will be aware that many output errors result
from incorrect calculations, and they are not
immediately obvious.11 Given the pervasiveness of
arithmetical error in spreadsheet programs,
explicated by Powell and others, the question arises
how people in fact use these programs in practice,
given that they are unreliable. It is beyond the scope
of this paper to pursue this line of thinking further.

The “Pentium bug”,12 which was a fault in the design
of the floating-point arithmetic processing in the Intel

11 Stephen G. Powell, Kenneth R. Baker and Barry Lawson,
‘Impact of errors in operational spreadsheets’, Decision
Support Systems 47(2):126-132, May 2009.
12 This fault was in fact an error in hardware design, but
came about in exactly the same way in which many software

Pentium processor chip, manifestly did not satisfy the
Tapper Condition. The bug was made public by
Professor Nicely, a mathematics professor, a month
after its maker knew of its existence. No one else
using the CPU devices, of which there were very
many, appears to have noticed inaccuracies in the
output until Professor Nicely raised the issue.13
Professor Nicely discovered the bug when he added a
new Pentium processor to his set of computational
devices performing number-theoretical research, and
obtained some slightly different results when using
the new processor. This was, in effect, a form of
regression test. This is a pervasive and valued
software assessment technique, in which, after an
update to software, predefined tests which have been
run on earlier versions of the software are repeated
on the updated software to test whether exactly the
same results ensue. Regression testing would be
unnecessary if most bugs were overt and the Tapper
Condition were to be valid.

Instances of what is called “unintended acceleration”
were reported in certain models of Toyota car. There
is a software-based defect which could have caused
instances of unintended acceleration, which
manifestly did not satisfy the Tapper Condition.14 The
existence of a bug which could cause the
phenomenon was disputed for some years. It not only
eluded discovery by the manufacturer, but also by a
team of NASA specialists, who spent a number of
person-years looking for one without success.15 A bug
was then discovered by the software engineer
Michael Barr when working as an expert witness. He
used a testing technique known as “fault injection”.
Barr claimed to have spent about three person-years
discovering this bug. This demonstrates that such
errors are not obvious – even to experts – and they do
not satisfy the Tapper Condition.16

Our final example contradicting the Tapper Condition

bugs come about – through mistakes in the design of the
component.
13 https://en.wikipedia.org/wiki/Pentium_FDIV_bug.
14 Michael Barr, Bookout v Toyota, 2005 Camry L4 software
analysis. Slides presented to the court, 2015, available at
https://www.safetyresearch.net/Library/BarrSlides_FINAL_S
CRUBBED.pdf.
15 Michael Barr, ‘Firmware forensics: best practices in
embedded software source code discovery’, 8 Digital
Evidence and Electronic Signature Law Review (2011) 148 –
151.
16 We understand the manufacturer continues to dispute
whether the actual phenomenon that was discovered was in
fact responsible for the unintended acceleration cases.

https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf
https://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

The Law Commission presumption concerning the dependability of computer evidence vvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 4

is R v Cahill; R v Pugh.17 Nurses were alleged to have
falsified patient records in 2012, because of
discrepancies found with computer records. The
assumptions of the Tapper Condition led to a criminal
trial, which collapsed three years later, when the
cause of the discrepancies was admitted by a
technician employed by the manufacturer of the IT
system. Interestingly, this case revolved around a joint
IT–OT system. The nurses used a handheld OT system,
together with a complex back-office IT system
recording their actions. That IT system was then
corrupted, thus creating fallible evidence that had not
been noticed was incorrect “immediately” in
accordance with the Tapper Condition.18

Other renowned defects manifestly do not satisfy the
Tapper Condition. For instance, malware represents a
form of error, in that a system subject to the
execution of malware will generally not perform its
intended function. The Stuxnet malware succeeded in
destroying a number of centrifuges before the
phenomenon was discovered and operation of the
equipment halted.19

In our opinion, inaccuracies in computer evidence are
at least as likely to result from errors in the computer
software as from errors in the data (including training
data in the case of AI). Our examples above are
intended to support this view, as well as show the
limited applicability of the Tapper Condition.

After noting various problems with a rigorous
application of PACE 1984 section 69 in the light of the
way in which IT systems were developed and
monitored, as well as that some OT systems (for
instance, an intoximeter) allow alternative methods of
verifying the accuracy of their operation, the Law
Commission proposed:

13.13 … that section 69 of PACE be repealed
without replacement.25 Without section 69, a
common law presumption comes into play:

In the absence of evidence to the
contrary, the courts will presume that

17 14 October 2014 (Crown Court at Cardiff, T20141094 and
T20141061 before HHJ Crowther QC).
18 Harold Thimbleby, “Misunderstanding IT: Hospital
cybersecurity and IT problems reach the courts,” Digital
Evidence and Electronic Signature Law Review, 15:11–32,
2018. DOI 10.14296/deeslr.v15i0.4891; Ruling by the Judge,
14 Digital Evidence and Electronic Signature Law Review
(2017) 67 – 71. DOI 10.14296/deeslr.v14i0.2541
19 Ralph Langner, To Kill a Centrifuge, The Langner Group,
November 2013, available from https://www.langner.com/to-
kill-a-centrifuge.

mechanical instruments were in order
at the material time.26

25 Ibid.

26 Phipson, para 23-14, approved by the Divisional Court
in Castle v Cross [1984] 1 WLR 1372, 1377B, per Stephen
Brown LJ.

13.14 Where a party sought to rely on the
presumption, it would not need to lead to
evidence that the computer was working
properly on the occasion in question unless
there was evidence that it may not have been
– in which case the party would have to prove
that it was (beyond reasonable doubt in the
case of the prosecution, and on the balance of
probabilities in the case of the defence). The
principle has been applied to such devices as
speedometers27 and traffic lights,28 and in the
consultation paper we saw no reason why it
should not apply to computers.

27 Nicholas v Penny [1950] 2 KB 466.

28 Tingle Jacobs & Co v Kennedy [1964] 1 WLR 638n.

There are, in fact, significant differences between
various digital computer-based systems that render
such a pervasive assumption questionable. The Law
Commission cites relatively uncomplex OT systems
such as speedometers, traffic lights, and intoximeters.
Such systems can indeed mostly satisfy the Tapper
Condition of overt, immediately recognisable failure,
or indeed recognisable failure upon inspection, in
contrast to the examples we have cited above that
manifestly do not.

We note that OT is manifestly not “computer
evidence” as such, although system logs may
constitute such evidence. Evidence is presumed to be
information, and is therefore overtly IT. However, we
note that the Law Commission introduces examples
from OT when formulating its views on IT, including its
view on the Tapper Condition – it mentions an
intoximeter, traffic lights and speedometers, which
are all OT. We consider these examples below.

To understand how an intoximeter might satisfy the
Tapper Condition, we note that there are physically
independent ways to verify the results of an
intoximeter application. A laboratory test for blood-
alcohol level is available; the subject may exhibit
other, independent evidence of intoxication (some
police forces ask a subject to walk along a narrow
straight line); and so on.

A second OT example is traffic lights. Traffic lights

https://www.langner.com/to-kill-a-centrifuge
https://www.langner.com/to-kill-a-centrifuge

The Law Commission presumption concerning the dependability of computer evidence vvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 5

appear to be fairly simple in terms of basic operation,
but functioning devices certified for operation on
roadways in most developed countries have complex
and sophisticated failure-tolerance mechanisms built
into them. These safety properties (such as not
showing “proceed” simultaneously in two conflicting
directions of travel) are implemented on the basis of
previous (often unfortunate) experience. The failure-
tolerant mechanisms introduced for this purpose are
generally validated by independent inspection
agencies. Such rigour is not generally applied to, nor
can it likely be practically applied in the same way to,
such large IT systems as, say, the Post Office Horizon
system. It is (still) an open question as to what
software-based systems might rigorously satisfy the
Tapper Condition.

The Law Commission continues by discussing the
response to their consultation proposal. It concludes:

Our recommendation

13.23 We are satisfied that section 69 serves
no useful purpose. We are not aware of any
difficulties encountered in those jurisdictions
that have no equivalent. We are satisfied that
the presumption of proper functioning would
apply to computers, thus throwing an
evidential burden on to the opposing party,
but that that burden would be interpreted in
such a way as to ensure that the presumption
did not result in a conviction merely because
the defence had failed to adduce evidence of
malfunction which it was in no position to
adduce. We believe, as did the vast majority
of our respondents, that such a regime would
work fairly. We recommend the repeal of
section 69 of PACE.45 (Recommendation 50)

45 See cl 19 of the draft Bill.

Section 69 of PACE 1984 was repealed by section 60
of the Youth Justice and Criminal Evidence Act 1999.
Since then, the presumption mentioned by the Law
Commission in its recommendation 13.23 (what we
have called the LC Presumption) has prevailed as a
rule of evidence.

Our discussion above indicates that we do not
consider that the LC Presumption appropriately
considers the actual behaviour of all software-based
systems, at least in the current or foreseeable state of
engineering development. We have indicated that
certain superficially-simple OT systems based on
digital computer hardware and software, such as

traffic lights, speedometers and intoximeters may
satisfy the Tapper Condition and therefore justify the
LC Presumption. However, such systems are usually
based on validation and certification regimes that are
completely different from the current techniques
used in the development of large software-based IT
systems, such as the Post Office Horizon system. Even
much simpler IT systems are remarkably hard to verify
and validate.

It is well to consider the quality of software in general.
The facts are, in our opinion, not encouraging. We
now review some of them.

The quality of software

The quality of software is traditionally taken in
software engineering to be correlated with the
density of (discovered) defects.20

First, we provide some definitions. A defect is,
according to the influential definition used at Carnegie
Mellon’s Software Engineering Institute, “any flaw or
imperfection in a software work product or software
process”, in which by software work product is meant
any artefact created as part of the software process,
which itself is “a set of activities, methods, practices,
and transformations that people use to develop and
maintain software work products”.21

The reader will recall we explained 1 kLOC as 1,000
lines of code; here we need to be a little more precise.
In the numbers we cite below, we consider lines of
executable source code, 1 kLOC represents a very
small program. The term “executable” means that
lines of pure commentary are not included in the
count. Commentary occurs regularly in well-written
source code as a means of leading an inspector
through its intended operation. “Source code” here
generally means programs written in imperative
languages such as C, Ada, Java, and Python. Such
imperative languages are by far the most common
type of language used for programming IT systems.
Such source code is transformed by automated formal
linguistic processes (compiling, and linking) into code
which can be read and executed directly by a

20 Yet another term for “something wrong”. We introduce it
here because it is used by the literature we discuss
immediately below.
21 Brad Clarke and Dave Zubrow, How Good is the Software:
A Review of Defect Prediction Techniques, Carnegie-Mellon
University Software Engineering Institute presentation, 2001,
available from
https://resources.sei.cmu.edu/asset_files/Presentation/2002_
017_001_22912.pdf.

https://resources.sei.cmu.edu/asset_files/Presentation/2002_017_001_22912.pdf
https://resources.sei.cmu.edu/asset_files/Presentation/2002_017_001_22912.pdf

The Law Commission presumption concerning the dependability of computer evidence vvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 6

computer.

Defects can arise in a number of ways in this process
of writing source code in a higher-level language and
translating. They may occur in the source code itself,
or be introduced by the largely-automated processes
of implementation, and lastly by the computer
hardware not quite executing the machine code the
way its designers intended or expected. Examples of
all of these phenomena are known to well-informed
software engineers. We consider here exclusively
defects in source code.

We now consider what defect numbers look like in
terms of kLOC. For the sake of simplicity, we only
consider defects in source code, ignoring other
sources of errors.

Humphrey considered data derived from more than
8,000 programs written by industrial software
developers.22 He wrote, “We now know how many
defects experienced software developers inject. On
average, they inject a defect about every ten lines of
code.” The average number of defects per kLOC was
about 120. The best 20% of programmers managed 62
defects per kLOC; the best 20%, 29 defects per kLOC.
Even the top 1% still injected 11 defects per kLOC.23
Typical OT and IT software has many kLOCs, even
thousands of kLOCs, and hence very many defects.
The evidence implies that all software can be
considered to have multiple faults.

McDermid and Kelly reported on the defect densities
in safety-critical industrial software:24

“There is a general consensus in some areas of
the safety critical systems community that a
fault density of about 1 per kLoC is world
class. Some software … is rather better but
fault densities of lower than 0.1 per kLoC are
exceptional. The UK [Ministry of Defence]
funded the retrospective static analysis of the
[Hercules] C130J [transport aircraft] software,
previously developed to [civilian aerospace

22 Watts S. Humphrey, ‘The Watts New? Collection: Columns
by the SEI’s Watts Humphrey’, Special Report CMU/SEI-
2009-SR-024. Software Engineering Institute, Carnegie-
Mellon University, November 2009, available at
https://resources.sei.cmu.edu/asset_files/SpecialReport/200
9_003_001_15035.pdf.
23 ‘The Watts New? Collection: Columns by the SEI’s Watts
Humphrey’, p 132.
24 John McDermid and Tim Kelly, Software in Safety-Critical
Systems: Achievement and Prediction, Nuclear Future
02(03), 2006, 3.1. Preliminary version is available at
https://www-users.cs.york.ac.uk/tpk/inuce2004.pdf.

software standard RTCA] DO-178B, and
determined that it contained about 1.4 safety-
critical faults per kLoC (the overall flaw
density was around 23 per kLoC…whilst a fault
density of 1 per kLoC may seem high it is
worth noting that commercial software is
around 30 faults per kLoC, with initial fault
injection rates of over 100 per kLoC.”

Consider that “safety-critical faults” means faults
whose possible consequences include system failures
causing damage (injuries or death and/or damage to
the environment). German and Mooney25 and
German26 report the C130J static analysis to which
McDermid and Kelly refer. Also see the somewhat
different view of Daniels.27 Ladkin lists the specific
software defects identified during this static analysis,
which were communicated to one of the authors.28
Jackson, Thomas and Millett reference a plethora of
incidents and dependability problems.29

Such defect densities are not inevitable. For example,
a company founded by one of the authors, Praxis,
now part of Altran UK Limited, develops software
using a program development environment named
SPARK,30 which makes extensive use of formal
methods. Chapman reports general defect densities of
around 1 per 25 kLOC in delivered software developed

25 Andy German and Gavin Mooney, 2001. Air Vehicle
Software Static Code Analysis – Lessons Learnt, in Felix
Redmill and Tom Anderson (eds.), Aspects of Safety
Management, Proceedings of the Ninth Safety-critical
Systems Symposium, Springer-Verlag London.
26 German, Andy 2003. Software Static Code Analysis
Lessons Learned. Crosstalk 16(11), The Journal of Defence
Software Engineering, November 2003, available from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63
8.6456&rep=rep1&type=pdf.
27 Daniels, Dewi, 2019 Email Contributions concerning the
UK MoD C130J software inspection, sent to the System
Safety List, 2019-11-14 and 2019-11-17, available at
http://www.systemsafetylist.org/2019-
November/005033.html,
http://www.systemsafetylist.org/2019-November/005044.html
and http://www.systemsafetylist.org/2019-
November/005045.html
28 Peter Bernard Ladkin, 2011. Dependable Software: A
View. Slides for a keynote talk at the 2011 Ada Connection
conference, Edinburgh UK. Available from https://rvs-
bi.de/publications/Talks/AdaConn2011TalkLadkin.pdf.
29 Daniel Jackson, Martyn Thomas and Lynette I. Millett
(eds.), 2007. Software for Dependable Systems: Sufficient
Evidence? Report of the Committee on Certifiably
Dependent Software Systems, (U.S.) National Research
Council. National Academies Press. Available from
https://www.nap.edu/catalog/11923/software-for-
dependable-systems-sufficient-evidence#toc.
30 John Barnes, SPARK: The proven approach to high-
integrity software (Altran Praxis, 2012).

https://resources.sei.cmu.edu/asset_files/SpecialReport/2009_003_001_15035.pdf
https://resources.sei.cmu.edu/asset_files/SpecialReport/2009_003_001_15035.pdf
https://www-users.cs.york.ac.uk/tpk/inuce2004.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.638.6456&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.638.6456&rep=rep1&type=pdf
http://www.systemsafetylist.org/2019-November/005033.html
http://www.systemsafetylist.org/2019-November/005033.html
http://www.systemsafetylist.org/2019-November/005044.html
http://www.systemsafetylist.org/2019-November/005045.html
http://www.systemsafetylist.org/2019-November/005045.html
https://rvs-bi.de/publications/Talks/AdaConn2011TalkLadkin.pdf
https://rvs-bi.de/publications/Talks/AdaConn2011TalkLadkin.pdf
https://www.nap.edu/catalog/11923/software-for-dependable-systems-sufficient-evidence#toc
https://www.nap.edu/catalog/11923/software-for-dependable-systems-sufficient-evidence#toc

The Law Commission presumption concerning the dependability of computer evidence vvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 7

using SPARK. This is one to two orders of magnitude
better than the C130J software considered above.31

However, as we have noted above, many software
developers still eschew thorough use of such formal
methods as used at Praxis and Altran UK Limited. In
our view this is because the use of formal methods
requires a level of mathematical and logical
understanding that many professional programmers
typically still do not possess. In addition, training and
experience in the use of such methods constitutes a
cost that most companies are not necessarily willing
to pay unless they are required to do so by
contractual or regulatory obligation.

There are exceptions. The current international
standard for the functional safety of software is IEC
61508-3:2010.32 This standard, as well as its
predecessor from 1997, classifies “formal methods” as
“Highly Recommended” for the highest-dependability
categories of software-implemented safety function
(those needing a “Systematic Capability” SC4, and
sometimes also for the next-lower category SC3). It
does not amplify, however, on which methods might
be meant, or which use of them would be helpful or
appropriate.

In an area of rapidly increasing importance for
software, the quality of software is generally taken by
cybersecurity professionals to be connected to its
cybersecurity vulnerability. This is shown in, for
example, the training materials of the SANS
Institute.33 We note that the list of vulnerabilities in
Tables C1 to C7 of the NIST guidance on ICS
cybersecurity34 look remarkably like lists of software
defects. While this may be so, we note that not every

31 Roderick Chapman, Slides 43-48 of presentation
Correctness by Construction: The Case for Constructive
Static Verification, 2005, available at.
https://samate.nist.gov/SSATTM_Content/papers/Correctnes
s%20by%20Construction%20-%20Chapman.pdf.
32 International Electrotechnical Commission, IEC 61508
Functional safety of electrical/electronic/programmable
electronic safety-related systems – Part 3: Software
requirements, Edition 2, 2010.
33 By way of example, see Evelyn Labbate, Vulnerability as a
Function of Software Quality. Global Information Assurance
Certification Paper, version of 2018-03-18. SANS Institute.
Available at
https://www.giac.org/paper/gsec/647/vulnerability-function-
software-quality/101493.
34 Keith Stouffer, Suzanne Lightman, Victoria Pillitteri,
Marshall Abrams and Adam Hahn, 2015. Special Publication
800-82, Guide to Industrial Control Systems (ICS) Security,

Revision 2. U.S. National Institute of Standards and
Technology, May 2015. Available from
https://csrc.nist.gov/publications/detail/sp/800-82/rev-2/final.

software defect results in a cybersecurity
vulnerability, and not every cybersecurity vulnerability
arises from a software defect.

A “Third Way” between PACE 1984 and
the LC Presumption

Computers are indeed fallible, as the Law Commission
recognised (paragraph 13.3). Any IT system of
practical size will have displayed faults many times
since it was first put into service. Most IT systems will
have had very many faults corrected through
“patches” or new releases of software. No
programmer could credibly claim that they know that
they have corrected the last fault in their software.35
We suggest that no competent programmer would
even make such a claim.

From the discussion above, it is our view that a court
should start with the presumption that any software
system contains or is influenced by errors that make it
fallible. It will therefore fail from time to time when a
combination of circumstances lead to an erroneous
path of execution through the software – and such
failures may not be obvious, and may even be
perverse. In assessing the weight to be placed on
specific computer evidence, it follows from this that
the trier of fact should ask “how likely is it that this
particular evidence has been affected in a material
way by computer error?”

Providing an answer to this question involves, first,
reviewing any available evidence for the number,
frequency and nature of errors that have been
reported in the particular system previously.

Relevant evidence should normally be readily
available. Any professional software support team will
of necessity maintain a database or log of errors that
have been reported, investigated and perhaps
corrected. There is likely to be a “known error log”
and records of earlier fixes. There may be lists of
corrected errors, and lists of errors that remain to be
corrected. These will be summarized in release
notices that accompany technical fixes (“patches”) or
new releases of software components. Further details
may exist in project reports and email exchanges. If
the software team works to professional project-
management standards, these should define what
records are kept and what information is available,
and how it has been audited. We note that, with the

35 See, for example, the discussion of the work of Adams
and others in the Appendix.

https://samate.nist.gov/SSATTM_Content/papers/Correctness%20by%20Construction%20-%20Chapman.pdf
https://samate.nist.gov/SSATTM_Content/papers/Correctness%20by%20Construction%20-%20Chapman.pdf
https://www.giac.org/paper/gsec/647/vulnerability-function-software-quality/101493
https://www.giac.org/paper/gsec/647/vulnerability-function-software-quality/101493
https://csrc.nist.gov/publications/detail/sp/800-82/rev-2/final

The Law Commission presumption concerning the dependability of computer evidence vvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 8

rise in concerns about cybersecurity, such record-
keeping is mandated by IT security standards.
Maintaining logs of system events, for example, is
part of an Information Security Management System
(ISMS), as required by ISO/IEC 27001:201336 (Annex A
12.4).

In Bates v Post Office Ltd (No 6: Horizon Issues),37 the
company Fujitsu, which was responsible for the IT
system Horizon, maintained a Known Error Log (KEL),
and maintained records of reported potential
anomalies and follow-up action, including remedial
measures by way of records known as PEAKs.38 This
enabled Fraser J and the expert witnesses to
categorise known Horizon system defects. As a result,
Fraser J was able to arrive at a judgement concerning
whether the claimants might be right that anomalies
in the Horizon system, and not their own
malfeasance, caused the problems they were accused
of by the Post Office.

Second, we suggest a court should consider the nature
of the specific evidence. Specifically, could the
evidence be materially changed by computer error?

For example, suppose evidence were to be presented
in the form of a coherent and lengthy chain of emails
nominally between participants. It would be hard to
propose a credible computer error that could create
such a lengthy email chain of any complexity that
retained coherence. In contrast, consider a single
calculated numerical value in a spreadsheet adduced
as evidence. It is easy to see how such a calculated
numeric value could be incorrect because of an
erroneous algorithm underlying the spreadsheet
calculations; indeed, many such errors are commonly

36 International Organization for Standardization/International
Electrotechnical Commission, ISO/IEC 27001 Information
technology -- Security techniques -- Information security
management systems – Requirements, ISO and IEC, 2013.
37 [2019] EWHC 3408 (QB).
38 Fraser J at [621] ‘The experts agreed the following about
PEAKs and their content. “PEAKs record a timeline of
activities to fix a bug or a problem. They sometimes contain
information not found in KELs about specific impact on
branches or root causes – what needs to be fixed. They are
written, by people who know Horizon very well. They do not
contain design detail for any change. They are generally
about development activities and timeline rather than about
potential impact. PEAKs typically stop when development
has done its job, so they are not likely to contain information
about follow-on activities, such as compensating branches
for any losses.” It is also agreed, and indeed can be seen
from the actual PEAKs themselves, that some of them record
observations of financial impact.’

encountered.39

Third, there is the question whether an IT system
complies (and, if so, to what level of conformance)
with any relevant standards to the application that it
nominally serves. For instance, consider the
bookkeeping system in relation to Bates v Post Office
Ltd (No 6: Horizon Issues).40 It is a requirement for
commercial bookkeeping to record all transactions. Its
is also important not to record transactions that do
not occur. It would follow that an IT system that
performs commercial bookkeeping functions should
adhere to these requirements, amongst others.
However, it seems that Horizon did not: Fraser J noted
a phenomenon listed as “Phantom Transactions”. (See
number 15 in his list of 29 bugs exhibited by Horizon
and known to Fujitsu in Appendix 2 to his judgment.)

An IT system which serves a commercial application,
but which does not adhere to standard requirements
within that application, can be regarded as generally
less dependable than systems which do so adhere,
and a court can legitimately make such an inference.
An exception to this inference may occur when the IT
system is accompanied by appropriate documentation
and evidence that explicitly lists the application
requirements the system does and does not address;
and that this documentation is in fact correct. It is
presumed that the users are aware of this
documentation, its contents and implications.

Implications for the LC Presumption

We have considered the requirement of PACE 1984
section 69, the 1997 Law Commission review of
computer evidence which considered the repeal of
the section, the deliberations of that review, including
the Tapper Condition and various phenomena of IT
and OT, including the discussion of a number of
relevant examples. We conclude that neither section
69(i)(b) of PACE 1984 nor the LC Presumption reflects
the reality of general software-based system
behaviour.

In the Appendix, we provide a technical account of the
mathematical and statistical models, together with
some empirical and experimental results that support
the current understanding of software failure
processes within the software engineering
community. In particular, we consider how this

39 Stephen G. Powell, Kenneth R. Baker and Barry Lawson,
‘Impact of errors in operational spreadsheets’, Decision
Support Systems 47(2):126-132, May 2009.
40 [2019] EWHC 3408 (QB).

The Law Commission presumption concerning the dependability of computer evidence vvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 9

understanding allows us to reach a number of
conclusions about the inappropriateness of the
statement by the Law Commission at 13.23: “We are
satisfied that the assumption of proper functioning
would apply to computers…”

This statement seems to us to come close to asserting
that it should be assumed that a software fault is not
the cause when some untoward event has occurred,
unless there is overt evidence of such a fault.
Ironically, a poorly engineered system, which is likely
to suffer from the effects of bugs, may also be unlikely
to record reliable evidence of its own behaviour.

In the particular case of evidence about the reliability
of IT and non-trivial OT, there are three issues, based
on the current state of knowledge of software
engineering, upon which we regard it as necessary
that a court form a view when considering computer
evidence. The points noted below are more fully
elaborated upon in the Appendix:

(1) A presumption that any particular
computer system failure is not caused by
software is not justified, even for software
that has previously been shown to be very
reliable.

(2) Evidence of previous computer failure
undermines a presumption of current proper
functioning.

(3) The fact that a class of failures has not
happened before is not a reason for assuming
it cannot occur.

© Peter Bernard Ladkin, Bev Littlewood,

Harold Thimbleby and Martyn Thomas CBE,

2020

The authors have collectively 150 years experience in
research and practice of software engineering, in
particular with mathematical and logical methods for
dependability, much of it safety-related. Their practical
methods for incident analysis are used by 11,000
engineers world-wide, and for dependable-
software/system development by companies in the
UK, France and the US. They have founded four
engineering companies, won the IEEE Harlan D. Mills
Award for software engineering, been honoured by
the Queen for services to software engineering, and
have advised the judiciary, lawyers, regulators and
government, and been a regulator.

The authors have also, formally and informally, acted
as reviewers to chapter 6 ‘The presumption that
computers are ‘reliable’’ in Stephen Mason and Daniel
Seng, editors, Electronic Evidence (4th edn, Institute of
Advanced Legal Studies for the SAS Humanities Digital
Library, School of Advanced Study, University of
London, 2017), Open Access PDF version in the
Humanities Digital Library
http://ials.sas.ac.uk/digital/humanities-digital-
library/observing-law-ials-open-book-service-
law/electronic-evidence

Peter Bernard Ladkin - Bielefeld University. CEO of tech-

transfer companies Causalis Limited and Causalis

Ingenieurgesellschaft mbH.

Bev Littlewood - Emeritus Professor of Software Engineering,

Centre for Software Reliability, City, University of London.

Harold Thimbleby - Emeritus Professor, Gresham College,

London; See Change Digital Health Fellow, Swansea

University, Wales; Visiting Professor, UCL, London.

Martyn Thomas CBE - Emeritus Professor, Gresham College,

London; Visiting Professor of Software Engineering at

Aberystwyth University, Wales.

http://ials.sas.ac.uk/digital/humanities-digital-library/observing-law-ials-open-book-service-law/electronic-evidence
http://ials.sas.ac.uk/digital/humanities-digital-library/observing-law-ials-open-book-service-law/electronic-evidence
http://ials.sas.ac.uk/digital/humanities-digital-library/observing-law-ials-open-book-service-law/electronic-evidence

The Law Commission presumption concerning the dependability of computer evidence vvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 10

Appendix

A general account of the software failure
process, and its consequences for the LC
Presumption

In this appendix we provide support for our three
concluding bullet points (for which see below)
concerning the LC Presumption. We do this by first
discussing the nature of software faults and failures.
We then describe two widely accepted mathematical
models of the software failure process. We go on to
describe briefly some quantitative evidence about
software faults and failures, obtained from experience
of widespread operational experience of large
software systems, and from some innovative
experiments. We then use this chain of model and
evidence to support our critique of the LC
Presumption.

We begin with some terminology. A software fault41 is
something “not right” in the software. It is the result
of some erroneous action during the creation of the
software, or perhaps at some later stage, for instance
when an attempt to fix a fault results in the
introduction of a new one. Such erroneous action can
be human error, for example a programmer error, or,
when software is automatically generated from
higher-level functional descriptions, as is increasingly
common, an error in the generation process.

Software in the form of source code can be regarded
as “pure design” since it has no physical manifestation,
unlike hardware. Software faults are the result of
errors in design. Software faults are static: they are a
permanent characteristic of software until they are
corrected. Unlike hardware, software does not
“break”; it does not suddenly start behaving
differently without anything else having changed, as a
chip does if transistors burn out. Note that software
faults can be either errors of commission – something
that is done that is “wrong” – or errors of omission –
something not done that should have been done.

A software failure is an event in which the software
does not exhibit the expected or intended behaviour
or yield the expected or intended output. Suppose the

41 “Fault” is also called “bug” (e.g., Fraser J in Bates v Post
Office Ltd (No 6: Horizon Issues) [2019] EWHC 3408 (QB))
and “defect” (e.g., in the Humphrey documents from the
Software Engineering Institute of Carnegie Mellon
University), as well as “error” (e.g., the Law Commission
review). We standardise here on “fault”.

software under consideration has a fault. Then, given
certain input data to the software in a particular
operational environment, the fault may become
manifest, in that it causes a failure of the software.
Suppose a failure has occurred and has been
observed. There usually follows a search for the fault
that caused it. The fault can be considered initially as
the sum total of characteristics of the software that
contributed to causing the failure. Not all of those
characteristics will necessarily be erroneous; some of
them might well be characteristics one wants to
retain. But some feature in that sum total will have to
be changed if we do not want the failure to recur.
Usually, the feature or features chosen to be changed
are regarded as the kernel “fault”.

There are two usual models – mathematized
conceptions – of software operational failures: one for
discrete events and a second for continuous
operation. An example of a discrete-demand system is
the protection system of a nuclear reactor, which is
called upon to shut down the reactor and keep it safe
if the reactor gets into a hazardous state. Such a
system is only called upon to act, generally rather
infrequently, when a hazardous state is entered. That
call is known as a demand, an event taken to occur at
a discrete point in time. Failure to act upon such a
demand is a potentially serious event for a safety-
critical system, such as a reactor protection system.
Many commercial IT systems are also demand-based,
for example, the transaction-processing part of the
Horizon system, considered in Bates v Post Office Ltd
(No 6: Horizon Issues),42 R v Seema Misra43 and the
earlier case of Post Office Ltd v Castleton.44 Here, an
interaction of a subpostmaster with the system is a
demand, and each interaction can be correctly
handled by the system, or the system can fail in some
way. If we are looking just at failure behaviour, we are
not concerned with the mathematical details of the
transaction, but only in whether the outcome was
success (a successful transaction) or failure (something
went wrong).

Examples of continuously operating systems are
common in engineering when a physical system is
under computer control. An example is a fly-by-wire

42 [2019] EWHC 3408 (QB).
43 T20090070, In the Crown Court at Guilford, Trial dates:
11, 12, 13, 14, 15, 18, 19, 20, 21 October and 11 November
2010, His Honour Judge N. A. Stewart and a jury, 12 Digital
Evidence and Electronic Signature Law Review (2015)
Introduction, 44 – 55; Documents Supplement.
44 [2007] EWHC 5 (QB).

The Law Commission presumption concerning the dependability of computer evidence vvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 11

aircraft control system. Such a system consists
(crudely) of a computer interposed between the
cockpit controls operated by the pilots and the
aerodynamic control surfaces of the aircraft: the pilots
manipulate their controls; the manipulations are
sensed by electronic devices called sensors and
communicated to the flight-control computer; the
flight-control computer processes these sensor values
as input, calculates what has to happen with the
aerodynamic control surfaces to achieve the intended
command, and then issues detailed commands to the
control-surface actuators to move the control surfaces
to get that to happen. A failure occurring in that
control-logic chain is an event that could, in principle,
occur at any time and may endanger the safety of the
aircraft. An example is where the aircraft is near the
ground, and the pilots issue a “climb” command by
pulling back on the control stick/column, but the
flight-control computer issues “nose down”/“descend”
commands to the elevator actuators.

In each of these processes, whether discrete-demand
or continuous operation, the failures occur in effect
randomly from the point of view of the system logic:
they arise through inputs to the processes combined
with features of the system environment (the relevant
parts of the world in which the system sits). The inputs
to the processes are generally not predictable to the
system (otherwise the values would not need to be
input), and the features of the system environment
are also just happenstance as far as the system is
concerned.

In statistics, phenomena that occur randomly in time
are said to form a stochastic process. The reason
failures are considered to be random is that, as
indicated above, the environment is not under the
control of the system (it can be too hot, too cold, too
damp or wet, too full of ionising radiation, and so on),
and one cannot generally say in advance when
demands or commands will occur and what they will
be. Hence, crucially, it cannot be predicted with
certainty from the logic of the system when failures
will occur. This means that we are in the realm of
probability if we wish to answer questions such as
“how reliable is this system?”

Quite simple probability models can be used to
address such questions. In the case of a demand-
based system, the random sequence of failures is
construed to follow a Bernoulli Process. A measure of
reliability here is probability of failure on demand
(pfd). In the case of continuously operating systems,

an appropriate model is a Poisson Process. Here a
measure of reliability is failure rate.

We illustrate how these models look by providing the
mathematical definition of a Bernoulli process. First,
we need a few more definitions. A random variable is
a quantity that acquires a value during the operation
of a stochastic process. We have noted above what
values are appropriate for describing the failure
process of a discrete-demand system, namely success
and failure. So a specific demand is represented by a
random variable, and the value of that variable
reflects how the demand turns out. This is called a
Bernoulli trial. Two trials are said to be (stochastically)
independent if the probability of a particular value of
one trial is completely unaffected by an observed
value of the other.

Mathematically, a Bernoulli process is a sequence of
Bernoulli trials, that is, a finite or infinite sequence of
independent random variables X1, X2, X3, ..., such that

o for each i the value of Xi is either 1 (standing
for failure) or 0 (for success);

o for all values of i, the probability p that Xi = 1
is the same.

An individual random variable Xi here is a Bernoulli
trial. Two Bernoulli trials are called identically
distributed if they have the same p. A Bernoulli
process is thus a sequence of independent identically-
distributed Bernoulli trials.

Independence here is crucial. It can be shown that, if
the probability p is known, past outcomes of previous
trials provide no information about the outcomes of
any trials in the future. (If p is unknown, however, the
past does inform indirectly about the future, in that an
observer will be trying to judge the likely value of p
through statistical inference from the trials they have
observed in the past) With the interpretation of the
value of Xi as success or failure, the parameter p is a
measure of the reliability of the underlying system
which the Bernoulli process is characterising.

For continuously operating systems, failures occur in a
Poisson process, which can be seen as the continuous-
time equivalent of the discrete-time Bernoulli process.
The parameter of this process – the equivalent of p in
the Bernoulli process – is the rate of occurrence of
failures, often denoted λ, which is a measure of a
continuously-operating system’s reliability. Poisson
processes share with Bernoulli processes the
characteristic that the history of past failures and their

The Law Commission presumption concerning the dependability of computer evidence vvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 12

timing does not affect the probabilities associated
with future events, so long as λ is known.

This business of independence of past and future, in
both the Bernoulli and Poisson processes, is a
mathematical property. Whether it applies to a real
system, at least to a close approximation, would need
to be checked.

Further details and mathematical properties of these
processes can be found in textbooks on stochastic
processes, and in many locations on the Web.45

It is worth noting – but is beyond the scope of this
article to demonstrate – that the Poisson process can,
under appropriate circumstances, be used as an
approximation to the Bernoulli process. In the case of
the Horizon system considered in Bates v Post Office
Ltd (No 6: Horizon Issues)46, R v Seema Misra47 and
Post Office Ltd v Castleton,48 one could treat the
failure events as if they occurred in calendar time as a
Poisson process, thus approximating to the Bernoulli
process in which they occur in terms of counts of sub-
postmaster demands. However, certain phenomena
such as “phantom transactions”, considered at [287] –
[295] of the Technical Appendix to Judgement (No. 6)
in Bates v Post Office Ltd (No 6: Horizon Issues),49 do
not occur as a result of real demands (hence the word
“phantom” used by Fraser J), but are seemingly-
random events occurring in a continuously-running
system. These are better modelled using Poisson
processes.

A major technical concern is the relationship between
faults and failures. How do faults in software affect its
reliability? Common sense might suggest to us that, all
things being equal, fewer faults generally result in
higher system reliability – in terms of the Bernoulli
process, there is a smaller probability of failure on
demand. We might also think that some faults are
“larger” than others, and therefore have a greater
deleterious effect upon reliability than “small” faults.
So, for a demand-based system, we can consider the

45 For example, Kyle Siegrist, Random, Chapter 10: Bernoulli
Trials, available at
https://www.randomservices.org/random/bernoulli/index.html
, and Chapter 13: The Poisson Process, available at
https://www.randomservices.org/random/poisson/index.html
46 [2019] EWHC 3408 (QB).
47 T20090070, In the Crown Court at Guilford, Trial dates:
11, 12, 13, 14, 15, 18, 19, 20, 21 October and 11 November
2010, His Honour Judge N. A. Stewart and a jury, 12 Digital
Evidence and Electronic Signature Law Review (2015)

Introduction, 44 – 55; Documents Supplement.
48 [2007] EWHC 5 (QB).
49 [2019] EWHC 3408 (QB).

size of a fault to be the probability that the fault will
cause a system failure on a randomly-selected
demand. For a continuously operating system the size
of a fault is the rate at which it would cause a failure –
in a Poisson process – during operation of the system.

Some of the issues in the relationship between faults
and failures that have been addressed in the software-
engineering literature are relevant to our critique of
the LC Presumption. We described some of this work
below, and its relevance to legal evidence.

A seminal early paper by Adams50 used a world-wide
database of software faults in many thousands of
large IBM computer systems to investigate the
variation in their sizes. The study involved thousands
of computers around the world, with tens of
thousands of years of combined operational exposure.
For each fault, the duration of its exposure, and the
number of times it manifested itself during that time,
allowed Adams to estimate its size (the rate of the
Poisson process associated with that fault).

Adams’ results were surprising to the software-
engineering community of the time. It turned out that
fault sizes varied enormously: the largest occurred
many orders of magnitude more frequently than the
smallest. Furthermore, the smallest faults were
extremely small.

Adams looked at two classes of software. One was a
single software product in three different “releases”
(versions). He divided the faults into 8 classes, ranging
from those which manifested in failure on average
every 30 months of operation, up to faults which
manifested in failure on average once in every 95,000
months of operation – a little over 7,900 years. He was
able to obtain data on faults which only manifest in
nearly 8,000 years of operation because the software
was running in many, many places. The significant
observation is that the faults he identified in this rare-
manifestation class were between a fifth and a
quarter of all faults.

In the second class, Adams looked at nine different
IBM software products. Here, the rarest manifestation
class was once in 60,000 months, that is, once in 5,000
years. The 9 products were uniform in so far that, for
each product, approximately one third of all the bugs
which manifested were in this once-in-5,000-year
class. That is, for one third of the faults in the software

50 Edward N. Adams, ‘Optimizing preventive service of
software products’, IBM J. of Research and Development
28(1): 2-14, 1984.

https://www.randomservices.org/random/bernoulli/index.html
https://www.randomservices.org/random/poisson/index.html

The Law Commission presumption concerning the dependability of computer evidence vvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 13

manifested in his study across these nine different
products, each led to failures on average every 5,000
years or longer.

The results from the general fault-failure model used
by Adams were validated in other empirical studies.
NASA had been funding extensive theoretical and
experimental studies in software engineering to
support their quest for high reliability in deep-space
exploration. Under this programme, some ingenious
experiments were conducted on some scientific and
engineering programs, albeit smaller than those
studied by Adams, to measure the sizes of their
faults.51 These experiments, and later ones,52
produced very similar results to those of Adams
concerning extremely large variation in fault sizes.

These data, of course, are several decades old, and
computer technology of all kinds has progressed in
that time. For example, Adams’ “most-frequent”
category of failure was once-in-30-months; today one
could be reasonably confident to detect all such bugs
in pre-release testing by running the software on
1,000 inexpensive desktop computers for a day. Such a
scenario seems entirely feasible for a software
company. Indeed, it may well be that all categories up
to Adams’s “least frequent” can be detected today by
suitable “test farms” and therefore corrected before
market release.

But that still leaves the problem of the remaining
faults, ones that manifest very infrequently. It is not
possible to be certain that there are not very many of
these, particularly in large and complex software
systems. The exact numbers may have changed
somewhat since the studies were carried out, but we
see no reason to think that the qualitative
phenomenology of software faults and failures as
identified by Adams and others has changed
significantly, and our collective experience supports
this view.

The model Adams used, that individual faults on
continuously-operating software manifest in failures

51 Phyllis M. Nagel and James A. Skrivan, Software
reliability: repetitive run experimentation and modelling,
Boeing Computer Services Company, NASA-CR-165836,
February 1982, available at
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/198200
13026.pdf.
52 Janet R. Dunham and John L. Pierce, An experiment in
software reliability, NASA Langley, NASA-CR-172553, May

1986, available at
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/198600
20075.pdf.

as a Poisson Process, is a general principle which is as
applicable today as it was when Adams was writing.
Because of the significantly increased power and
speed of computers in the intervening time, most of
the fault classes which Adams used have become, in
principle, detectable with standard pre-release
testing. Adams stopped with his “most infrequently
manifesting” class at a 5,000-year, or 7,900-year mark.
This would be no longer appropriate today. The values
that Adams chose were arbitrary cut-offs which he
used to summarise his data. It is now reasonable to
assume that the “left tail” of the distribution of fault
sizes extends even further to the left than Adams’ cut-
off points. If Adams were to be writing today, the
“window” of fault classes would simply have shifted to
more-infrequent faults.

Discussion of the relevance for the legal
profession

We consider the general conclusions that can be
drawn from these empirical and experimental results.
In particular, we contemplate what they tell us about
the appropriateness of the LC Presumption. We
suggest three tropes that lawyers, judges and
academics writing on evidence may wish to keep in
mind when constructing and judging arguments
concerning the dependability of software.

Consider the statement of the Law Commission at
13.23: “We are satisfied that the assumption of proper
functioning would apply to computers…”

This seems to us to come close to asserting that it
should be assumed that a software fault is not the
cause when some untoward event has occurred,
unless there is overt evidence of such a fault. Clearly
such an assertion could not be supported when the
software in question has been shown to be unreliable.
But what about the case when the software is
demonstrably reliable, as shown, for example, by
empirical evidence such as extensive failure-free
working? Here, the lesson from the Adams data
(discussed above), and others, is that even software
like this may have – indeed is likely to have – latent
faults (probably very small ones) that will eventually
show themselves as failures during operation. (As well
as latent faults that will not so show themselves.) In
the absence of evidence to the contrary, therefore, it
would be unreasonable to assume that in a particular
instance software is innocent of causing failure. Thus:

(1) A presumption that any particular computer
system failure is not caused by software is not

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19820013026.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19820013026.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19860020075.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19860020075.pdf

The Law Commission presumption concerning the dependability of computer evidence vvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 14

justified, even for software that has previously been
shown to be very reliable.

The text of 13.23 goes on to provide a “let out” for the
defence from the assumption of proper functioning of
software. Essentially this states that the defence
should not necessarily fail if it had not been in a
position to find evidence of malfunction on the part of
the software (and thus had, presumably, not found
such evidence). This appears to allow the introduction
of indirect evidence – i.e., short of direct evidence of
malfunction in the particular instance under trial.

We provide a couple of examples of the kind of
indirect evidence that might be appropriate.

An obvious example would be evidence that the
software had previously “failed similarly”, so that one
might infer this may have happened in this instance,
even though there was no direct evidence for this.

For a second example, consider a case in which there
is agreement that some untoward event is caused
either by software, or by a human operator. If there
have been failures in the past where it has been
agreed which of these was the cause, then the failure
process is a super-position of two independent
Poisson processes: one of computer failures and one
of human failures. (The overall human + software
failure process can also be shown to be a Poisson
process.) Rigorous statistical arguments can then be
used to claim how likely it is that, in this particular
instance, the responsibility lay with the computer
rather than the human. Again, a situation like this
would seem to undermine the “proper functioning”
presumption of 12.23. Thus:

2) Evidence of previous computer failure undermines
a presumption of current proper functioning.

How should we consider a case where there has been
no evidence of occurrence of a software failure that
masquerades as a human failure (for example, the
“phantom transactions” considered by Fraser J)? Can
or should it be concluded that such a failure cannot
occur?

It is well known amongst software engineers that
software can fail in ways that have not been seen
before. Most obviously, a new fault manifests itself for
the first time, and the consequences – the nature of
the failure – are different from those that have been
seen in previous failures. The Adams data show that
there can be many such latent faults.

More formally, consider a possible class of faults that

has not been seen to manifest itself yet; for example,
human-masquerading faults as considered in the
example above. If we assume that all faults manifest
themselves as Poisson processes, then it can be shown
that any subclass of such faults will also occur in a
Poisson process. So how confident should we be that
we shall not see a manifestation of a human-
masquerading fault in the future, if we have not seen
one in the past? This problem was addressed in some
detail in a paper by one of the authors and his
colleague.53 The informal answer is that we cannot be
very confident: for example, if we have seen the
system in operation for x hours without failure there is
only about a 50:50 chance that it will survive a further
x hours before failing. This means that if a particular
class of faults has not shown itself even in massive
testing, our confidence in it not manifesting in
operation can only be rather modest.

It follows that:

(3) The fact that a class of failures has not happened
before is not a reason for assuming it cannot occur.

53 Bev Littlewood and Lorenzo Strigini, ‘Validation of ultra-
high dependability for software-based systems’, Comm. ACM
36(11): 69-80, 1993.
https://openaccess.city.ac.uk/id/eprint/1251/.

https://openaccess.city.ac.uk/id/eprint/1251/

