

ARTICLE:

Robustness of software

By Peter Bernard Ladkin

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License Digital Evidence and Electronic Signature Law Review, 17 (2020) | 15

In the English civil court case Bates v Post Office
Limited (Bates 2019),1 the properties of the Post
Office Horizon transaction-processing system were
investigated and argued. On Day 1 of the proceedings,
March 11, 2019, Anthony de Garr Robinson QC for the
Post Office defined “robustness” of the Horizon
software-based system (Bates, Day 1 Transcript, §87):

“The concept of robustness is a concept which
involves reducing to an appropriate low level
of risk, the risk of problems in Horizon causing
shortfalls which have a more than transient
effect on branches. So it involves both
measures to prevent bugs arising in the first
place but those measures are never going to
be perfect and it includes measures which
operate once a bug has actually occurred and
triggered a result. It is both aspects of the
equation. I don’t say that the word “robust”
necessarily means “extremely low level of
risk”, but what we say is that if you have a
robust system it produces a result in which
the system works well in the overwhelming
majority of cases and when it doesn’t work
well there are measures and controls in place
to reduce to a very small level the risk of bugs
causing non-transient lasting shortfalls in any
given set of branch accounts.”

The concept of robustness was at the core of the
defendant’s argument, which was that Horizon was
“robust”, if not infallible.

We shall see that the vocabulary deployed by Mr de
Garr Robinson is not used in this way in computing,
whether or not it is conceptually clear.

In computing science, the notion of “dependability” is
defined by IFIP Working Group 10.4 as follows:

the ability to deliver service that can
justifiably be trusted

(AvLaRaLa 2004), with the added comment that the
definition stresses the need for the justification of

1 Bates v the Post Office Ltd (No 6: Horizon Issues) [2019]
EWHC 3408 (QB), at
http://www.bailii.org/ew/cases/EWHC/QB/2019/3408.html

trust. The authors note an alternative definition as:

the ability to avoid service failures that are
more frequent and more severe than is
acceptable.

Both of these definitions involve social concepts. One
is the concept of (justifiable) trust, the other of
acceptability (of rate and severity of failure). Both
stem from the intuition that computer systems are
engineered systems that accomplish something
directly or indirectly desired by human users. A
computerised system for controlling an aircraft (called
“fly-by-wire”) fulfils certain expectations, or not, of its
pilots, passengers and operators (and air traffic
control). It may do so by happenstance, or it may do
so because of careful development which has paid
attention to all the ways in which control actions can
go right or wrong, and has paid careful attention to
ensure that the designers’ decisions as to these
control actions are correctly implemented according
to precise engineering descriptions of their behaviour.
That second alternative, careful development using
methods known to enhance SW quality, is what is
referred to by the term “justifiable” in the definition.
IFIP WG 10.4 defines “reliability” as

continuity of correct service

This involves being able to tell what is “correct” and
what “not correct” in an encapsulated series of
operations (a “service”), and in assessing that this
service is provided “correctly” over a continuous time
period. An appropriate way in engineering to tell what
is correct and not correct in a service is to write an
exact “specification” of the service from which anyone
can tell unambiguously, using inference and precise
meanings of terms, whether a given behaviour
constitutes “correct service” or not. The engineering-
science of behavioural specification is most well-
developed in computer science, but is increasingly
applied to wider areas of engineering.

IFIP WG 10.4 has published no explicit definition of
software-system robustness.

http://www.bailii.org/ew/cases/EWHC/QB/2019/3408.html

Robustness of softwarevvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 16

The International Federation of Information
Processing Societies (IFIP) is one source of definitions
of terms used in computing. Another are international
electrotechnical standards published by the
International Electrotechnical Commission. The
international standard definition of “reliability” in
electrotechnology is:

ability to perform as required, without failure,
for a given time interval, under given
conditions

(IEV, definition 192-01-24).2 This is an absolute
definition – “without failure”. However, the term is
more often used in software engineering to denote
the degree to which a software-based system
approximates this desirable situation. The discipline of
“software reliability engineering” is concerned with
estimating the chance of failure in operation, over a
given time interval, under given conditions, to a given
level of confidence (usually expressed either as a
percentage or as a probability, equivalently).3 Some
consequences of results in software reliability
engineering for the law are discussed in (LLTT 2020),
particularly in the Appendix.

There is also an international standard definition of
“robustness” in systems and software engineering,
namely:

degree to which a system or component can
function correctly in the presence of invalid
inputs or stressful environmental conditions

The definition has been current since at least 1990
(IEEE 610.12; in this document with an initial word
“the”) and was last published in 2017 (IEC 24765).

Notice the term “degree”. This is a term with values;
“always”, “some of the time”, “seldom”, and/or
“98%”, “60%”, “35%” are the kinds of values it can
take. The question “is this system robust?” has
thereby no meaning, or at most a derivative meaning.
The question “to what degree is this system robust?”
is compatible with the definition, and its answer

2 There are in fact some 40 or so definitions of “reliability”
in various IEC standards, which may be reviewed by
inputting this term to the on-line IEC Glossary (IEC
Glossary). They are by no means all semantically
equivalent, as shown by SemAn (Ladkin 2019) but the
differences need not concern us here.
3 The premier journal in software engineering is arguably
the IEEE Transactions on Software Engineering. Many of the
seminal papers in software reliability engineering in this
“degree” sense have appeared in IEEE Trans. Soft. Eng. over

would be one of the values suggested by the
examples above.

One part of the definition which does not seem
particularly applicable to software is the property of
functioning correctly “under stressful environmental
conditions”. A computer might become too hot, say
when the ambient temperature is consistently 30°C or
higher, or the humidity might become too high, or
water might enter inside the computer and enable all
manner of short-circuits. Normally, devices such as
computers have “given conditions”, temperature
ranges and humidity ranges and so forth, specified by
the manufacturer, under which they are to operate. A
computer could be said to be fairly robust if it
continues operating in the expected manner even
when the ambient conditions are outside those
specified by the manufacturer. Software, however,
consists of connected sequences of instructions4
which the computer central processing unit (CPU) is to
execute. The logic of those connected sequences is
not influenced in the slightest by “environmental
conditions”, just as the operation of adding 2 and 3
together is not so influenced: the answer is 5, no
matter what the ambient temperature. It follows that
the robustness of software is given by the degree to
which the software functions correctly when given
invalid inputs.

This interpretation is consistent with that of the
standard for software in civilian aircraft, including
control software (ED-12C), which is:

The extent to which software can continue to
operate correctly despite the introduction of
invalid inputs

What is an “invalid input”? Say the software takes

data on values for patients’ vital signs in a hospital, to

form a database of those signs. One of those vital

signs is body temperature. For living persons, this lies

within a smallish range round about 37°C. In a

database, the units can be implicit, so a temperature

the decades. The prestigious International Symposium on
Software Reliability Engineering (ISSRE) is a conference
which has been running for over 30 years.
4 The correct term here would be a mathematical network
of instructions. To avoid confusion with computer
networks, which are collections of computers joined
together by a communications medium such as Ethernet, or
communicating with each other over electromagnetic
signals such as WiFi, I speak of “connected sequences”,
even though this term is mathematically improper.

Robustness of softwarevvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 17

value can be taken to be around 37, if the units are °C.

A value of 20, or of 50, would surely imply that the

patient is already dead (indeed, it is hard to see how a

value of 50°C could in any case be obtained from a

patient in a normal ambient temperature). A value

of -30 is out of the question. So there is some sense of

a range for a living person; entering a value into the

database which is outside this range would be

entering “invalid input”.

Notice that invalid input is a different phenomenon

from mistaken input: it is perfectly possible for

medical personnel to measure a temperature of 38°C

and mistakenly enter “36” into the database. Entering

a value of “36” is in this case mistaken, but it is not

invalid in that it lies within the range of body

temperatures which a living person can exhibit.

Indeed errors of this sort involving mistaken input

happen (rather too) frequently, are often put down to

lack of care on the part of personnel, but are often

realised nowadays to be inadvertently enabled in

many cases by the design of the equipment they are

using (CuBlTh 2015). Both “38” and “36” are valid

values of body temperature, in that they both lie

within the range of body temperatures which a living

person can exhibit.

Another case of invalid input occurs when the

software awaits a numerical value for some quantity,

but receives a sequence of natural-language text. Or

when it is awaiting a report in some text format such

as PDF, and receives a number. Here, it is said there is

a “data type” error. Numbers are a data type (indeed,

whole numbers are a different data type from

numbers expressed as decimals, or numbers in

scientific notation, in most software) and text is

another, different data type.

For more than fifty years, there have existed high-

level programming languages which allow a

5 It is important here that correct application is practical in
industry settings, which indeed it is for the techniques of
which I am speaking – software engineers can use these
techniques routinely and correctly, although of course
mistakes will always be made here and there. Other
techniques are used for detecting such mistakes.

programmer to specify data types, and which enforce,

when they are compiled into machine code, that the

data being manipulated conforms to its specified

type. One of the first was Algol 68. Another is the

teaching language Pascal, already in use in the early

1970’s for teaching programming at the University of

California, Berkeley. The language Ada, used

nowadays for a wealth of applications for which

reliability is crucial, is another high-level language

with what is called “strong data typing”. For more

information on high-level languages and machine

code and their relation, see (LadTho 2020). In such

languages, one can define a data type which we might

call <body temperature> (different symbols for such

types are used in different languages) by specifying

that <body temperature> is a range of decimal

numbers between 35 and 38, in mathematical

notation the interval I1 = [35, 38] (all numbers x such

that 35 ≤ x ≤ 38). Or we might decide, alternatively, to

specify the interval I2= [33,40]. Under the first option

I1, a value of 34 would be “invalid”, because it lies

outside the interval I1, and the compiled high-level

program would return what is called an “exception

condition”; it would recognise the input as invalid and

act accordingly. Under the second option I2, the

software would accept the value 34 as valid, because

it lies within the interval.

Attempting to compute with input values that are
invalid, and halting the execution of the program with
an error message, is one example of what is known as
a “run time error”. There are industrially-mature
techniques for developing software which guarantee
the absence of run-time errors (providing mistakes
are not made in the application of the techniques).
Correct application5 of such techniques thus leads to
software which is guaranteed to be perfectly robust in
the IEC sense. Let me call it IEC-robustness, although
as noted the concept is also accepted by ISO, IEEE and
EUROCAE. IEC-robustness can be assured6 by the use
of software development methods which avoid run-

6 Meaning that, as long as the computer hardware
continues to run “normally”, without damage or failure,
and the software continues to run “normally” on the
hardware, without alteration, such operational errors are
guaranteed not to occur.

Robustness of softwarevvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 18

time errors.

IEC-robustness does not seem to be what Mr. de Garr
Robinson had in mind when he used the term. In the
case being tried (Bates 2019), what were called the
“Horizon Issues” concerned properties of the Horizon
system other than those arising from dealing with
anomalous input, as well as more general, if
occasional, notable phenomena arising during use of
Horizon. The issue of invalid input does not explicitly
occur amongst the “Horizon Issues” as determined by
the case management. One wonders why a
completely different use of the term “robust” was
introduced by counsel from that which
electrotechnologists the world over would be using. I
refer henceforth to “GR-robustness” to indicate the
concept which I believe Mr. de Garr Robinson invokes.

The background to the case is that users of the
Horizon system, “sub-postmasters”, were accused,
and in some cases convicted, of crimes in that they
were alleged to have conducted fraudulent
transactions. In the specific fraudulent transactions at
issue in the criminal proceedings, the Horizon system
was contended by the prosecution to have completed
the transactions correctly, and the subpostmasters to
have committed fraud. Whereas the defence
argument was often that no fraud had been
committed and the Horizon system had completed
certain transactions incorrectly; and possibly invented
transactions sui generis that had not in fact taken
place. The judgement in (Bates 2019) indeed
determined that it was possible that Horizon
completed certain transactions incorrectly (a
phenomenon acknowledged by both claimants and
defendant) and indeed exhibited transactions that
had not in fact taken place (called “phantom
transactions”).

GR-robustness has more to do with reliability – here,
spelt out for a transaction-processing system, of

7 Since all parties in (Bates 2019) agreed that the absolute
definition of reliability was not attained by such a complex
system as Horizon (which the prosecution in a related case
expressed by saying that Horizon was not “infallible”), the
reliability characteristics are those of “software reliability
engineering”: saying to what degree and to what
confidence level the system is reliable.
8 The terminology “expectation of failure”, or “failure
expectation”, is coined here and not standard. The precise
technical terms used (e.g., “mean time to failure”, or
“probability of failure on demand”), are dependent on
which statistical modelling mathematics is used to capture

completing individual transactions correctly rather
than incorrectly – than IEC-robustness. However,
there is a second aspect of dependability which is
surely relevant – that of not generating transactions
which did not take place. This does not appear to be
explicitly addressed in GR-robustness. GR-robustness
includes, supplemental to the reliability property, a
criterion concerning how the software behaves in
case of failure.

Transactions are demands on a system. A demand
arrives as a form of input (the transaction is initiated)
and there is a closing point (the transaction is
completed) at which the demand will have been
accommodated successfully or unsuccessfully. To tell
if a particular on-demand SW operation O is GR-
robust, it is necessary

A: To determine if/how O is reliable.7 Namely,
to what expectation of failure8 and to what
confidence level this expectation may be
held.9

B: To specify mitigants M1,....,Mk for the
failure of O (and, presumably, to explain how
the declared-mitigations actually mitigate);

C: To determine the failure characteristics of
M1,....,Mk (failure expectations, stochastic
(in)dependence of/on each other, etc);

D: To estimate P(O fails and M1,....,Mk all fail
on a demand) to confidence level C. (And, of
course, to determine what confidence level C
is required.)

Consider first Condition A. It speaks of “expectation of
failure” in, say, a time period. System failure
behaviour might be “bursty”, in which failures cluster
in a relatively short time period, with longer periods
of time between clusters, or more uniform, in which
failures occur regularly with more or less even time
periods between; and anything in between. When we

the failure phenomenology of the software. We need a
term which is independent of modelling technique, so I
introduced one. Note also that the values taken by the
concepts tied to specific modelling mathematics can be
very different: e.g., if a system is perfect and exhibits no
failures, then “probability of failure on demand” will be 0,
but “mean time to failure” will be ∞!
9 Recall that failure expectation and confidence level are
not unique. We may have 70% confidence in less than one
failure per day, as well as, at the same time, 90%
confidence in less than one failure per hour.

Robustness of softwarevvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 19

speak of “failure expectation”, we mean some kind of
statistical average of the number of failures we expect
to occur in a given time period, or the expected length
of time until the next failure occurs. Where FE is the
failure expectation, and C the confidence level, I have
found that it is not generally understood that there
are many pairs of valid <FE, C> corresponding to a
given history of system behaviour. It seems sensible,
for a given FE, to express the highest C which that FE
can attain, given evidence N. Let us call it CMAX(FE).
Then, for a given system, any given evidence N of its
failure behaviour will result in many <FE, CMAX(FE)>
pairs.

Given evidence N of system behaviour including
failure, it follows there is a curve with independent
variable FE (on the “x axis”) and dependent variable
CMAX(FE) (on the “y axis”) which expresses the
reliability of the system. This curve is surely the most
precise output fulfilling Condition A. Less precise, but
still practically useful, outputs would consist of a finite
– small – sample of confidence levels CMAX(FE) and
their corresponding FE values.

With regard to Condition B, it is not only important to
say what the mitigations M1,....,Mk are, but to explain
how they mitigate the failure, and indeed to provide
an argument (even a formal verification) that those
explanations are indeed correct; that M1,....,Mk
indeed mitigate in the manner claimed. Recall the IFIP
WG 10.4 emphasis on the justification of trust in their
definition of dependability.

Condition C deals with the case in which the
mitigations themselves fail. Suppose O fails because it
requires access to a database DB, which becomes
unavailable, and the mitigations M1,....,Mk all use DB.
Then the mitigations are also unavailable. O and the
mitigations M1,....,Mk are not stochastically
independent in this case – they are subject to a
common-cause failure, namely the unavailability of
DB. Because they are not stochastically independent
of each other, assessing the statistical failure
parameters of each of M1,....,Mk by themselves will
not generally help to determine the chances of
unmitigated failure of O, because there are few if any
ways of combining those parameters if they are not
stochastically independent. There are of course ways
in computer science of dealing with operations which
might not be able to complete if they require access
to a resource which is not available – “rollback”
procedures and such constructs as “recovery blocks”
have been known for decades. In a well-designed

system, procedures M1,....,Mk involved in rollback
and recovery will operate logically-independently of
any operation O for which they are the recovery, but
this independence must be demonstrated, and part of
good system design is to enable such demonstrations
to be relatively easily given.

Condition D will be fulfillable most easily if the
stochastic independence of failure of O and the failure
of mitigation mechanisms M1,....,Mk has been
convincingly argued, for then the failure likelihood is
just the multiplicative product of the individual failure
likelihoods. But this scenario is prima facie quite
unlikely. If O is a complex operation, and there is need
for rollback if O does not complete, then it is quite
likely that both O and its rollback mitigations will need
at least some common access to some resource. The
example of a database DB was used above, but this
resource might be any one of a number of things, and
will constitute a common-cause failure possibility for
both O and its mitigants if it fails.

It is beyond the state of the art in software reliability
engineering to be able to give general rules for
assessment of Condition D independent of the very
specific system architecture in which operation O
takes place. This entails that, in general, a court
hearing arguments about GR-robustness should
expect disclosure of details about the system
architecture and failure-expectation values derived
from rates of observed failure enough to enable
specialists to come to conclusions concerning
Condition D. These details of system architecture will
include much more detail than we have seen in some
recent cases in which the robustness of software
system architecture has been disclosed in legal
proceedings.

A third concept of “robust”

The Horizon system was also claimed to be “robust” in
a criminal court case, Regina v Seema Misra (Seema
Misra, 2009) in which the “robust[ness]” of the
Horizon system was advocated by prosecuting
counsel, Mr. Tatford. The (claimed) robustness of the
Horizon system was given as the main reason for
concluding that discrepancies in system accounting
were due to criminal activity by Ms. Misra. Ms. Misra
was convicted, and sentenced to a term of
imprisonment.

Mr. Tatford characterised the nature of “computer
error” in the Horizon system:

Robustness of softwarevvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 20

“if there was a computer error, we all use
computers these days, if you have a computer
error you are aware of it. …. in this post office,
there were all sorts of printouts to tell you if
things are going wrong and you are doing a
stock take all the time. So you would have
thought that if there was a computer error
the defendant would have been aware of it
and would have mentioned it in her
interview”10

Counsel seems to be proposing a version of what
Ladkin, Littlewood, Thimbleby and Thomas (LLTT
2020) call “the Tapper Condition”, that “most
computer error is either immediately detectable or
results from error in the data entered into the
machine” (Tapper 1991). Counsel is saying that
“computer error” is “immediately detectable”, and is
not concerned in this case with error in input data. Let
me call this the T-Tapper Condition (“T” for Tatford).
Ladkin and others (LLTT 2020) have pointed out that
the Tapper Condition is by no means universally
satisfied by software-based computer systems. The
judgement of Fraser J identified the occurrence in the
Horizon system of “phantom transactions”, supposed-
transactions that were spontaneously generated by
the Horizon system hardware and software rather
than initiated by any system user. Such “computer
error” was far from being “immediately detectable”. It
follows that the Horizon system did not satisfy the
Tapper Condition.

The T-Tapper Condition is in fact stronger than the
Tapper Condition. The Tapper Condition does not
require that any computer error resulting from
erroneous input data be immediately observable, but
the T-Tapper Condition requires that any “problem”
be immediately observable, including presumably
“problems” arising from erroneous input data.11 If the
Horizon system does not satisfy the Tapper Condition,
then a fortiori it does not satisfy the stronger T-
Tapper Condition. It follows that prosecuting

10 Day 1 Monday 11 October 2010, 49C – D.
11 “Erroneous input data” in the sense of the Tapper
condition is a different concept from “fraudulent, i.e.,
intentionally incorrect, input data”, which is what was
under investigation in Regina v Seema Misra. Erroneous
data in the sense of the Tapper condition are supposed to
cause observable anomaly. Whereas if a transaction
records £2 takings when the subpostmaster actually
pocketed £200, in a case of fraud, the fraud is perpetrated
most effectively when this transaction gives no indication at

counsel’s claim of “robust[ness]”, in his sense, in
Seema Misra 2009 was and is incorrect.

Mr. Tatford did not claim that Horizon is perfect: “no
computer system in fact is going ever to be perfect.
They all have problems from time to time.”12 He
proffers no definition of what he means by “perfect”,
but does make the connection with not having
“problems”. This is close to the International
Electrotechnical Vocabulary concept of “reliable”:
“ability to perform as required, without failure, for a
given time interval, under given conditions” (IEV,
Definition 192-01-24). Here we would identify an
occurrence of “a computer problem”13 (Tatford) with
the system “not performing as required” (derived
from Definition 192-01-24). Note that there are to be
given constraints: the time interval, and other
“conditions”.

Mr. Tatford goes on to introduce the idea of
robustness:

“So it has got to be a pretty robust system and
you will hear some evidence from an expert in
the field as to the quality of the system.
Nobody is saying it is perfect …. but the Crown
say it is a robust system and that if there
really was a computer problem the defendant
would have been aware of it. That is the
whole point because when you use a
computer system you realise there is
something wrong if not from the screen itself
but from the printouts you are getting when
you are doing the stock take.”14

There seems to be an identification of “robust” with
system “quality”, as well as with satisfying the T-
Tapper Condition. Further,

“There was in 2006 a problem at a post office
in Falkirk in Scotland called Calendar [sic]
Square .. [witness for the prosecution] says
that does not apply here. [Expert witness for
the defence] says it does.

the system level of being erroneous, but “looks as if it is
right”.
12 Day 1 Monday 11 October 2010, 48E – H.
13 I do not know of any technical definition of “computer
problem”. The terms “fault”, “failure”, “error”, and “defect”
all occur, and are defined, in various technical literature,
and the word “bug” is also commonly used, for instance in
the judgement of Fraser J in Bates v Post Office Ltd.
14 Day 1 Monday 11 October 2010, 49F – 50B.

Robustness of softwarevvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 21

The Crown say it does not because that
problem, as I say, computer problems should
be obvious to the user.”15

Again, the T-Tapper Condition is invoked.

The term “robust” was invoked by counsel for the
defence in the cross-examination of Mr. Jenkins,
expert witness for the prosecution:

“Q. Can I ask you this, that do you have any
experience of creating computer systems for
banks?

A. No.

……….

Q. Because you have got no experience of
[systems for banks]?

A. Not of doing systems for banks, no.

Q. So you do not – cannot tell the court
whether this Horizon system would be a
failing system if you compared it to a retail
bank?

A. ……. I’ve not compared it with a retail bank.

……...

A. …...I’m saying it’s been tested against the
criteria that’s been put on us by Post Office.

Q. You see, what has happened, everyone has
put trust in the Horizon system, that it is
infallible, it is robust.

…………..

Q. And I am just asking for assistance and
reassurance but you cannot give that, that it is
compatible to a bank, can you?

A. Because it is not seen as being a banking
system.”16

Here, defence counsel is suggesting that the
prosecution has been arguing that the system is
infallible (the prosecution has already noted they are
not claiming the system is infallible – see above) and
robust. It is not clear if counsel is suggesting that
robustness is the same concept as infallibility. Since
the prosecution has been arguing that the Horizon
system is robust, but explicitly said that they are not
claiming it is infallible, it would seem the prosecution

15 Day 1 Monday 11 October 2010, 54B – F.
16 Day 4 Thursday 14 October 2010, 85E – 86F.
17 Tuesday 19 October 2010, 10B-D.

intends the two concepts to be different. Note that
the IEV definition of reliable implies “perform[ing] as
required, without failure”. This is surely close to what
is meant by infallible. But infallibility seems to come
without constraints on time or conditions.

The judge sums up the prosecution’s contentions as
follows:

“……. the prosecution’s case which as I have
drafted currently, subject to your
observations, is that there is ample evidence
to establish that Horizon is a tried and tested
system in use at thousands of post offices for
several years and fundamentally robust and
reliable”17

The judge is here bringing the concepts “robust” and
“reliable” together. If the IEC definition of “reliable” is
used, then it is close to “infallible”. So both counsel
for the defence and the judge are suggesting by
association that “robust” is cognate with
“reliable/infallible”, but the prosecution has already
said in its opening address that “no computer system
is perfect”, and we have argued that “perfect” in this
sense is cognate with “reliable” in the IEV sense
(without the constraints). So the properties which the
prosecution are claiming for the Horizon system are
not identical with the properties the judge or defence
counsel are saying the prosecution is claiming.

A fourth notion of robustness

There is another notion of robustness which is used
with some computer-based systems. It is worth while
to note it here, because of its superficial similarity in
some ways to the notion discussed in Seema Misra
2009, in order to point out that turns out not to be
relevant to the cases discussed above. It is a notion
used in statistics. The scientific-model-builder and
statistician George Box is well known for his bon mot
that all (scientific) models are wrong, but some
models are useful. In 1979 he considered the notion
of robustness in models, which even then were
realised mostly in digital computer code in order for
their values and parameters to be calculated.18 Box
defined robustness as follows.

“Robustness may be defined as the property
of a procedure which renders the answers it

18 Nowadays it often seems as if the code itself is the
model, rather like the Phillips Hydraulic Computer, the
MONIAC (Wiki MONIAC n.d.).

Robustness of softwarevvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 22

gives insensitive to departures, of a kind
which occur in practice, from ideal
assumptions. Since assumptions imply some
kind of scientific model, I believe that it is
necessary to look at the process of scientific
modelling itself to understand the nature of
and the need for robust procedures. Against
such a view it might be urged that some
useful robust procedures have been derived
empirically without an explicitly stated model.
However, an empirical procedure implies
some unstated model and there is often great
virtue in bringing into the open the kind of
assumptions that lead to useful methods.”
(Box 1979)

We can see here some characteristics similar to the
concept of robustness promoted by the prosecution
in Seema Misra 2009. The answers the model (the
code) gives are not necessarily perfect, but they are
“insensitive to departures, of a kind which occur in
practice, from ideal assumptions”. The assumption is
not literally exactly right, but the output produced
under the assumption is somehow insensitive to this
deviation from reality. The code (model) is not perfect
(by assumption) but you can somehow trust what it
outputs. This seems very like what the prosecution
argued in Seema Misra 2009: the Horizon system is
not perfect, but it does what you want it to do,
therefore anomalies must be due to intentional
subversion, i.e. fraud.

It is thus worth pointing out that this notion does not
apply to transaction-processing systems. A transaction
is an exact process, unlike an estimation of a quantity
in a scientific model. When the transaction concerns
an item exchanged for £31.34, then that exact
amount £31.34 must be recorded and processed. It is
not acceptable for such a system to handle such
amounts as “£30 (give or take a bit)”. Whereas the
latter is what Box was talking about. Box’s notion of
robustness says that you get a usefully similar answer
with input £30 (giving or taking a bit) as you do with
£31.34. This might be all right for friends divvying up a
restaurant bill for a group meal informally amongst
themselves, but not so for a commercial transaction,
where it would simply mean you would be recording a
transaction incorrectly, which is in no way useful.
Box’s notion of robustness has no place in discussion
concerning transaction processing systems.

Discussion

The notion of “robust” has a defined meaning in
international standards for software engineering, and
concerns how the system copes with invalid input
data, namely it refers to the degree to which a system
or component can function correctly in the presence
of invalid inputs or stressful environmental conditions.
Software engineering techniques such as strong data
typing have existed for over half a century which can
help to ensure robustness.

A different sense of “robust” was introduced in Bates
2019 by counsel for the defence, who gave a complex
definition which we have called “GR-robust”, which at
least one of the phenomena confirmed in Fraser J’s
judgement, phantom transactions, did not satisfy. It
follows from this judgement that the Horizon system
was not GR-robust. We have indicated what kind of
evidence would be required to establish that a
software-based system is GR robust; it is quite
extensive and requires detail of the system
architecture (and evidence that that architecture was
in fact implemented as intended).

The notion of the Horizon system being “robust” was
significant to the arguments of prosecution and
defence in Seema Misra 2009. The notion of “robust”
was, however, not defined explicitly by either counsel
or the judge. We have argued that it was interpreted
by the prosecution as semantically equivalent to the
T-Tapper Condition, and by the judge and defence
counsel as semantically equivalent to the IEV
definition of “reliable” (without the time and
condition constraints). The judgement of Fraser J in
Bates 2019 established that Horizon was not reliable
(over the entire period of its use, under the conditions
existing throughout that period), where “reliable” is
meant in the IEC sense. It follows from the judgement
of Fraser J that Horizon also did not satisfy the Tapper
Condition (observed in (LLTT 2020)), and thus that it
did not satisfy the T-Tapper Condition, which is
logically stronger than the (plain) Tapper Condition.
And, thus, that the prosecution’s claim in Seema
Misra 2009 also fails: Horizon was not robust in the
sense of fulfilling the T-Tapper Condition.

© Peter Bernard Ladkin, 2020

Robustness of softwarevvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 23

References

(AvLaRaLa 2004) Algirdas Avizienis, Jean-Claude

Laprie, Brian Randell and Carl Landwehr, Basic

Concepts and Taxonomy of Dependable and Secure

Computing, IEEE Trans. Dep. Sec. Comp. 1(1), Jan-Mar

2004.

(Bates 2019) Bates v the Post Office Ltd (No 6: Horizon

Issues) [2019] EWHC 3408 (QB), available at

http://www.bailii.org/ew/cases/EWHC/QB/2019/340

8.html

(Seema Misra 2009) Regina v Seema Misra,

T20090070, In the Crown Court at Guilford, Trial

dates: 11, 12, 13, 14, 15, 18, 19, 20, 21 October and

11 November 2010, His Honour Judge N. A. Stewart

and a jury, 12 Digital Evidence and Electronic

Signature Law Review (2015) Introduction, 44 – 55;

Documents Supplement, available at

https://journals.sas.ac.uk/deeslr/article/view/2217

(Box 1979) George E. P. Box, Robustness in the

Strategy of Scientific Model Building, MRC Technical

Summary Report #1954, Mathematics Research

Center, University of Wisconsin-Madison, May 1979.

Available from

https://apps.dtic.mil/dtic/tr/fulltext/u2/a070213.pdf

Also published in Robustness in Statistics, ed. Robert

L. Launer and Graham N. Wilkinson, Academic Press,

1979. Available through

https://www.sciencedirect.com/science/article/pii/B9

780124381506500182

(CuBlTh 2015) Paul Curzon, Ann Blandford, Harold

Thimbleby and Anna Louise Cox, Safer Interactive

Medical Device Design: Insights from the CHI+MED

Project, Security and Safety 3(9). Available at

https://www.researchgate.net/publication/30145201

8_Safer_Interactive_Medical_Device_Design_Insights

_from_the_CHIMED_Project

(ED-12C) EUROCAE, ED-12C - Software considerations

in airborne systems and equipment certification.

EUROCAE, 1999. This document is also published by a

North-American consortium, RTCA, under the

designation DO-178C. It is known in the industry both

as DO-178C and as ED- 12C.

(IEC 24765) International Organisation for

Standardization/International Electrotechnical

Commission/Institute of Electrical and Electronics

Engineers, ISO/IEC/IEEE International Standard 24765-

2017 Systems and software engineering – vocabulary,

ISO/IEC/IEEE 2017. Available through the ISO On-line

Browsing Platform at

https://www.iso.org/obp/ui/#iso:std:iso-iec-

ieee:24765:ed-2:v1:en

(IEEE 610.12) Institute of Electrical and Electronics

Engineers, IEEE Std. 610.12-1990 IEEE Standard

Glossary of Software Engineering Terminology, IEEE,

1990.

(IEC Glossary) International Electrotechnical

Commission, Glossary. On-line WWW resource,

available at http://std.iec.ch/glossary

(IEV) International Electrotechnical Commission, IEC

60050, International Electrotechnical Vocabulary.

International Electrotechnical Vocabulary, no date.

Available at http://www.electropedia.org

(LadTho 2020) Peter Bernard Ladkin and Martyn

Thomas, Software Quality, Its Nature, and the

Cultures of Building It, preprint 2018/2020. Available

from

https://www.researchgate.net/publication/33969724

6_Software_Quality_Its_Nature_and_the_Cultures_of

_Building_It

(Ladkin 2019) Peter Bernard Ladkin, Semantic

Analysis: SemAn, preprint 2019-08-14. Available from

the author.

(LLTT 2020) Peter Bernard Ladkin, Bev Littlewood,

Harold Thimbleby and Martyn Thomas CBE, The Law

Peter Bernard Ladkin is a systems-safety specialist with a

background in software dependability and logic. His causal

accident analysis method Why-Because Analysis (WBA) is

used by some 11,000 engineers worldwide. He taught at

Bielefeld University and is CEO of tech-transfer companies

Causalis Limited and Causalis Ingenieurgesellschaft mbH.

http://www.bailii.org/ew/cases/EWHC/QB/2019/3408.html
http://www.bailii.org/ew/cases/EWHC/QB/2019/3408.html
https://journals.sas.ac.uk/deeslr/article/view/2217
https://apps.dtic.mil/dtic/tr/fulltext/u2/a070213.pdf
https://www.sciencedirect.com/science/article/pii/B9780124381506500182
https://www.sciencedirect.com/science/article/pii/B9780124381506500182
https://www.researchgate.net/publication/301452018_Safer_Interactive_Medical_Device_Design_Insights_from_the_CHIMED_Project
https://www.researchgate.net/publication/301452018_Safer_Interactive_Medical_Device_Design_Insights_from_the_CHIMED_Project
https://www.researchgate.net/publication/301452018_Safer_Interactive_Medical_Device_Design_Insights_from_the_CHIMED_Project
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:24765:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:24765:ed-2:v1:en
http://std.iec.ch/glossary
http://www.electropedia.org/
https://www.researchgate.net/publication/339697246_Software_Quality_Its_Nature_and_the_Cultures_of_Building_It
https://www.researchgate.net/publication/339697246_Software_Quality_Its_Nature_and_the_Cultures_of_Building_It
https://www.researchgate.net/publication/339697246_Software_Quality_Its_Nature_and_the_Cultures_of_Building_It

Robustness of softwarevvvvvvvv

Digital Evidence and Electronic Signature Law Review, 17 (2020) | 24

Commission presumption concerning the

dependability of computer evidence. Digital Evidence

and Electronic Signature Law Review 17, 2020.

(Tapper 1991) Colin Tapper, Discovery in Modern

Times: A Voyage around the Common Law World, 67

Chicago-Kent Law Review 217, 248, 1991.

(Wiki MONIAC n.d.) Wikipedia, MONIAC, no date.

Available at https://en.wikipedia.org/wiki/MONIAC

https://en.wikipedia.org/wiki/MONIAC

